Solid-State Color Centers for Single-Photon Generation
Abstract
:1. Introduction
2. Single-Photon-Emitting Color Centers
3. Material Platforms
3.1. Diamond
ZPL (nm) | T (K) | Excited State Lifetime (ns) | FWHM at Operational Temperature (nm) | Single Emitter Saturation Count Rate (kcps) | Spin Manipulation | Integration of SPs with Photonic Structures | References | ||
---|---|---|---|---|---|---|---|---|---|
Diamond | NV | 575, 638 | RT | 12–22 | Broad emission | 1 k | Yes | Yes | [19,30,31,32,33,34,61,65] |
SiV | 738 | RT | 1.0–2.4 | 0.7–5 | ~4.8k | Yes | Yes | [35,54,55,62,63,64,66] | |
GeV | 602 | RT | 1.4–5.5 | 5 | 170–1.2 k | Yes | Yes | [35,37,52,55] | |
SnV | 620 | RT | 6 | 6 | 530 | Yes | Yes | [35,38,67,68] | |
PbV | 520, 552 | RT | >3 | 7 | 1.04 k | [35,39] | |||
MgV | 558 | RT | 2.4 | 3 | 0.44–1.46 k | [23] | |||
ST1 | 557 | RT | 9 | ~5 | Yes | [45] | |||
He | 536, 560 | RT | 29, 106 | <2 (ensemble) | [46] | ||||
Xe | 794, 812 | RT | ~0.77 | Broad emission | [47] |
3.2. Silicon Carbide
3.3. Silicon
ZPL (nm) | T (K) | Excited State Lifetime (ns) | FWHM at Operational Temperature (nm) | Single Emitter Saturation Count Rate (kcps) | Spin Manipulation | Integration of SPs with Photonic Structures | References | ||
---|---|---|---|---|---|---|---|---|---|
Silicon | G | 1279 | 4–110 K | 35.8 | 0.28 | 8 | Yes | Yes | [103,106,110,131,142] |
W | 1218 | 4–60 K | 3–34.5 | 0.1 | 2–6 | Yes | [111,117,140,141] | ||
T | 1326 | <5 K | 940 | 0.04 | 2 | Yes | [115,116] |
3.4. Nitrides
ZPL (nm) | T (K) | Excited State Lifetime (ns) | FWHM at Operational Temperature (nm) | Single Emitter Saturation Count Rate (kcps) | Spin Manipulation | Integration of SPs with Photonic Structures | References | ||
---|---|---|---|---|---|---|---|---|---|
(Mg)-doped and undoped GaN films | Intrinsic defects | 600–700 | RT | ~1–3 | ~5 | 100–150 | Yes | [152,153,154,155] | |
Intrinsic defects | 1100–1300 | RT | 0.7 | 3–50 | 500 | Yes | [157,158] | ||
AlN | NAlVN, VAlVN | 550–1000 | RT | ~2 | <12 | 500 | Yes | [161,162,168] | |
hBN | VNNB | 623 | RT | ~3 | >4 k | Yes (without attribution to a specific defect complex) | [171,172,173,179,180,181] | ||
VBCN | 630 | RT | ~2–6 | ~5–35 | >4 k | [171,176,179,180,181,191,192,193,194,195,196,197] | |||
VB− | 850 | RT | 1.2 | Broad emission | >4 k | Yes | [169,175,177,178,179,180,181] | ||
SiN | Intrinsic defects | 567–670 | RT | 3.8 | Broad emission | 500 | Yes | [170] |
4. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 071101. [Google Scholar] [CrossRef]
- Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 2015, 5, 14383. [Google Scholar] [CrossRef]
- Leifgen, M.; Schröder, T.; Gädeke, F.; Riemann, R.; Métillon, V.; Neu, E.; Hepp, C.; Arend, C.; Becher, C.; Lauritsen, K.; et al. Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution. New J. Phys. 2014, 16, 023021. [Google Scholar] [CrossRef]
- Schiavon, M.; Vallone, G.; Ticozzi, F.; Villoresi, P. Heralded single-photon sources for quantum-key-distribution applications. Phys. Rev. A 2016, 93, 012331. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 2018, 12, 516–527. [Google Scholar] [CrossRef]
- Piergentili, P.; Amanti, F.; Andrini, G.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Cornia, S.; Dao, T.H.; et al. Quantum Information with Integrated Photonics. Appl. Sci. 2023, 14, 387. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Paraïso, T.K.; Woodward, R.I.; Marangon, D.G.; Lovic, V.; Yuan, Z.; Shields, A.J. Advanced Laser Technology for Quantum Communications (Tutorial Review). Adv. Quantum Technol. 2021, 4, 2100062. [Google Scholar] [CrossRef]
- Li, X.; Voss, P.L.; Sharping, J.E.; Kumar, P. Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band. Phys. Rev. Lett. 2005, 94, 053601. [Google Scholar] [CrossRef] [PubMed]
- Signorini, S.; Pavesi, L. On-chip heralded single photon sources. AVS Quantum Sci. 2020, 2, 041701. [Google Scholar] [CrossRef]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic Boson Sampling in a Tunable Circuit. Science 2013, 339, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Adcock, J.C.; Vigliar, C.; Santagati, R.; Silverstone, J.W.; Thompson, M.G. Programmable four-photon graph states on a silicon chip. Nat. Commun. 2019, 10, 3528. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-M.; Guo, Y.; Liu, B.-H.; Li, C.-F.; Guo, G.-C. Progress in quantum teleportation. Nat. Rev. Phys. 2023, 5, 339–353. [Google Scholar] [CrossRef]
- Kuhn, A.; Hennrich, M.; Rempe, G. Deterministic Single-Photon Source for Distributed Quantum Networking. Phys. Rev. Lett. 2002, 89, 067901. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.C.; Jung, D.; Wan, Y.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photon. 2018, 3, 030901. [Google Scholar] [CrossRef]
- Arakawa, Y.; Holmes, M.J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309. [Google Scholar] [CrossRef]
- Toninelli, C.; Gerhardt, I.; Clark, A.S.; Reserbat-Plantey, A.; Götzinger, S.; Ristanović, Z.; Colautti, M.; Lombardi, P.; Major, K.D.; Deperasińska, I.; et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 2021, 20, 1615–1628. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T. Color centers based on heavy group-IV elements. Semicond. Semimet. 2020, 103, 237. [Google Scholar] [CrossRef]
- Gatto Monticone, D.; Traina, P.; Moreva, E.; Forneris, J.; Olivero, P.; Degiovanni, I.P.; Taccetti, F.; Giuntini, L.; Brida, G.; Amato, G.; et al. Native NIR-emitting single colour centres in CVD diamond. New J. Phys. 2014, 16, 053005. [Google Scholar] [CrossRef]
- Corte, E.; Andrini, G.; Nieto Hernández, E.; Pugliese, V.; Costa, Â.; Magchiels, G.; Moens, J.; Tunhuma, S.M.; Villarreal, R.; Pereira, L.M.C.; et al. Magnesium-Vacancy Optical Centers in Diamond. ACS Photonics 2023, 10, 101–110. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef]
- Siyushev, P.; Jacques, V.; Aharonovich, I.; Kaiser, F.; Müller, T.; Lombez, L.; Atatüre, M.; Castelletto, S.; Prawer, S.; Jelezko, F.; et al. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds. New J. Phys. 2009, 11, 113029. [Google Scholar] [CrossRef]
- Forneris, J.; Traina, P.; Gatto Monticone, D.; Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I.P.; Enrico, E.; Moreva, E.; Grilj, V.; et al. Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes. Sci. Rep. 2015, 5, 15901. [Google Scholar] [CrossRef]
- Martínez, J.A.; Parker, R.A.; Chen, K.C.; Purser, C.M.; Li, L.; Michaels, C.P.; Stramma, A.M.; Debroux, R.; Harris, I.B.; Appel, M.H.; et al. Photonic Indistinguishability of the Tin-Vacancy Center in Nanostructured Diamond. Phys. Rev. Lett. 2022, 129, 173603. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond; Springer: New York, NY, USA, 2001. [Google Scholar]
- Brouri, R.; Beveratos, A.; Poizat, J.-P.; Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 2000, 25, 1294–1296. [Google Scholar] [CrossRef]
- Ruf, M.; Wan, N.H.; Choi, H.; Englund, D.; Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 2021, 130, 070901. [Google Scholar] [CrossRef]
- Pezzagna, S.; Meijer, J. Quantum computer based on color centers in diamond. Appl. Phys. Rev. 2021, 8, 011308. [Google Scholar] [CrossRef]
- Barton, J.; Gulka, M.; Tarabek, J.; Mindarava, Y.L.; Wang, Z.; Schimer, J.; Raabova, H.; Bednar, J.; Plenio, M.B.; Jelezko, F.; et al. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano 2020, 14, 12938–12950. [Google Scholar] [CrossRef]
- Bourgeois, E.; Gulka, M.; Nesladek, M. Photoelectric Detection and Quantum Readout of Nitrogen-Vacancy Center Spin States in Diamond. Adv. Opt. Mater. 2020, 8, 1902132. [Google Scholar] [CrossRef]
- Webb, J.L.; Troise, L.; Hansen, N.W.; Frellsen, L.F.; Osterkamp, C.; Jelezko, F.; Jankuhn, S.; Meijer, J.; Berg-Sørensen, K.; Perrier, J.-F.; et al. High-Speed Wide-Field Imaging of Microcircuitry Using Nitrogen Vacancies in Diamond. Phys. Rev. Appl. 2022, 17, 064051. [Google Scholar] [CrossRef]
- Bradac, C.; Gao, W.; Forneris, J.; Trusheim, M.E.; Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 2019, 10, 5625. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kurtsiefer, C.; Weinfurter, H.; Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B 2006, 39, 37–41. [Google Scholar] [CrossRef]
- Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K.D.; Rogers, L.J.; Naydenov, B.; et al. Germanium-Vacancy Single Color Centers in Diamond. Sci. Rep. 2015, 5, 12882. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Miyamoto, Y.; Taniguchi, T.; Siyushev, P.; Metsch, M.H.; Jelezko, F.; Hatano, M. Tin-Vacancy Quantum Emitters in Diamond. Phys. Rev. Lett. 2017, 119, 253601. [Google Scholar] [CrossRef] [PubMed]
- Ditalia Tchernij, S.; Lühmann, T.; Herzig, T.; Küpper, J.; Damin, A.; Santonocito, S.; Signorile, M.; Traina, P.; Moreva, E.; Celegato, F.; et al. Single-Photon Emitters in Lead-Implanted Single-Crystal Diamond. ACS Photonics 2018, 5, 4864–4871. [Google Scholar] [CrossRef]
- Trusheim, M.E.; Pingault, B.; Wan, N.H.; Gündoğan, M.; De Santis, L.; Debroux, R.; Gangloff, D.; Purser, C.; Chen, K.C.; Walsh, M.; et al. Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. Phys. Rev. Lett. 2020, 124, 023602. [Google Scholar] [CrossRef]
- Görlitz, J.; Herrmann, D.; Fuchs, P.; Iwasaki, T.; Taniguchi, T.; Rogalla, D.; Hardeman, D.; Colard, P.-O.; Markham, M.; Hatano, M.; et al. Coherence of a charge tabilized tin-vacancy spin in diamond. Npj Quantum Inf. 2022, 8, 45. [Google Scholar] [CrossRef]
- Rosenthal, E.I.; Anderson, C.P.; Kleidermacher, H.C.; Stein, A.J.; Lee, H.; Grzesik, J.; Scuri, G.; Rugar, A.E.; Riedel, D.; Aghaeimeibodi, S.; et al. Microwave Spin Control of a Tin-Vacancy Qubit in Diamond. Phys. Rev. X 2023, 13, 031022. [Google Scholar] [CrossRef]
- Harris, I.B.; Michaels, C.P.; Chen, K.C.; Parker, R.A.; Titze, M.; Martínez, J.A.; Sutula, M.; Christen, I.R.; Stramma, A.M.; Roth, W.; et al. Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond. PRX Quantum 2023, 4, 040301. [Google Scholar] [CrossRef]
- Osmic, E.; Pezzagna, S.; Lühmann, T.; Böhlmann, W.; Meijer, J. Unusual temperature dependence of the photoluminescence emission of MgV centers in diamond. Appl. Phys. Lett. 2022, 121, 084101. [Google Scholar] [CrossRef]
- Lühmann, T.; Diziain, S.; Meijer, J.; Pezzagna, S. Identification and Creation of the Room-Temperature Coherently Controllable ST1 Spin Center in Diamond. ACS Photonics 2022, 9, 1691–1699. [Google Scholar] [CrossRef]
- Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.; Traina, P.; Moreva, E.; Degiovanni, I.P.; Genovese, M.; Ditalia Tchernij, S.; et al. Photo-physical properties of He-related color centers in diamond. Appl. Phys. Lett. 2017, 111, 111105. [Google Scholar] [CrossRef]
- Sandstrom, R.; Ke, L.; Martin, A.; Wang, Z.; Kianinia, M.; Green, B.; Gao, W.-B.; Aharonovich, I. Optical properties of implanted Xe color centers in diamond. Opt. Commun. 2018, 411, 182–186. [Google Scholar] [CrossRef]
- Ditalia Tchernij, S.; Herzig, T.; Forneris, J.; Küpper, J.; Pezzagna, S.; Traina, P.; Moreva, E.; Degiovanni, I.P.; Brida, G.; Skukan, N.; et al. Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation. ACS Photonics 2017, 4, 2580–2586. [Google Scholar] [CrossRef]
- Lühmann, T.; Meijer, J.; Pezzagna, S. Charge-Assisted Engineering of Color Centers in Diamond. Phys. Status Solidi A 2021, 218, 2000614. [Google Scholar] [CrossRef]
- Wang, P.; Taniguchi, T.; Miyamoto, Y.; Hatano, M.; Iwasaki, T. Low-Temperature Spectroscopic Investigation of Lead-Vacancy Centers in Diamond Fabricated by High-Pressure and High-Temperature Treatment. ACS Photonics 2021, 8, 2947–2954. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Johnson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 2017, 11, 77–80. [Google Scholar] [CrossRef]
- Nieto Hernández, E.; Redolfi, E.; Stella, C.; Andrini, G.; Corte, E.; Sachero, S.; Ditalia Tchernij, S.; Picariello, F.; Herzig, T.; Borzdov, Y.M.; et al. Efficiency Optimization of Ge-V Quantum Emitters in Single-Crystal Diamond upon Ion Implantation and HPHT Annealing. Adv. Quantum Technol. 2023, 6, 2300010. [Google Scholar] [CrossRef]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Sakakura, M.; Chiappini, A.; Fernandez, T.T.; Longhi, S.; Jedrkiewicz, O.; Shimotsuma, Y.; Criante, L.; et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 2016, 6, 355566. [Google Scholar] [CrossRef]
- Schröder, T.; Trusheim, M.E.; Walsh, M.; Li, L.; Zheng, J.; Schukraft, M.; Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Nguyen, C.T.; et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun. 2017, 8, 15376. [Google Scholar] [CrossRef]
- Wan, N.H.; Lu, T.-J.; Chen, K.C.; Walsh, M.P.; Trusheim, M.E.; De Santis, L.; Bersin, E.A.; Harris, I.B.; Mouradian, S.L.; Christen, I.R.; et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 2020, 583, 226–231. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Osterkamp, C.; Brinza, O.; Rollo, M.; Robert-Philip, I.; Goldner, P.; Jacques, V.; Jelezko, F.; Achard, J.; Tallaire, A. Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond. Carbon 2022, 194, 282–289. [Google Scholar] [CrossRef]
- Ekimov, E.; Lyapin, S.; Kondrin, M. Tin-vacancy color centers in micro- and polycrystalline diamonds synthesized at high pressures. Diam. Relat. Mater. 2018, 87, 223–227. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M. High-pressure synthesis and characterization of Sn-doped single crystal diamond. Carbon 2019, 143, 769–775. [Google Scholar] [CrossRef]
- Engel, J.; Jhuria, K.; Polley, D.; Lühmann, T.; Kuhrke, M.; Liu, W.; Bokor, J.; Schenkel, T.; Wunderlich, R. Combining femtosecond laser annealing and shallow ion implantation for local color center creation in diamond. Appl. Phys. Lett. 2023, 122, 234002. [Google Scholar] [CrossRef]
- Wang, X.; Fang, H.; Sun, F.; Sun, H. Laser Writing of Color Centers. Laser Photonics Rev. 2022, 16, 2100029. [Google Scholar] [CrossRef]
- Schukraft, M.; Zheng, J.; Schröder, T.; Mouradian, S.L.; Walsh, M.; Trusheim, M.E.; Bakhru, H.; Englund, D.R. Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photonics 2016, 1, 020801. [Google Scholar] [CrossRef]
- Evans, R.E.; Bhaskar, M.K.; Sukachev, D.D.; Nguyen, C.T.; Si pahigil, A.; Burek, M.J.; Machielse, B.; Zhang, G.H.; Zibrov, A.S.; Bielejec, E.; et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018, 362, 662–665. [Google Scholar] [CrossRef]
- Burek, M.J.; Meuwly, C.; Evans, R.E.; Bhaskar, M.K.; Sipahigil, A.; Meesala, S.; Machielse, B.; Sukachev, D.D.; Nguyen, C.T.; Pacheco, J.L.; et al. Fiber-Coupled Diamond Quantum Nanophotonic Interface. Phys. Rev. Appl. 2017, 8, 024026. [Google Scholar] [CrossRef]
- Koch, M.K.; Hoese, M.; Bharadwaj, V.; Lang, J.; Hadden, J.P.; Ramponi, R.; Jelezko, F.; Eaton, S.M.; Kubanek, A. Super-Poissonian Light Statistics from Individual Silicon Vacancy Centers Coupled to a Laser-Written Diamond Waveguide. ACS Photonics 2022, 9, 3366–3373. [Google Scholar] [CrossRef]
- Hausmann, B.J.M.; Shields, B.; Quan, Q.; Maletinsky, P.; McCutcheon, M.; Choy, J.T.; Babinec, T.M.; Kubanek, A.; Yacoby, A.; Lukin, M.D.; et al. Integrated Diamond Networks for Quantum Nanophotonics. Nano Lett. 2012, 12, 1578–1582. [Google Scholar] [CrossRef] [PubMed]
- Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Burek, M.J.; Borregaard, J.; Bhaskar, M.K.; Nguyen, C.T.; Pacheco, J.L.; Atikian, H.A.; Meuwly, C.; et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 2016, 354, 847–850. [Google Scholar] [CrossRef]
- Rugar, A.E.; Aghaeimeibodi, S.; Riedel, D.; Dory, C.; Lu, H.; McQuade, P.J.; Shen, Z.-X.; Melosh, N.A.; Vučković, J. Quantum Photonic Interface for Tin-Vacancy Centers in Diamond. Phys. Rev. X 2021, 11, 031021. [Google Scholar] [CrossRef]
- Fuchs, P.; Jung, T.; Kieschnick, M.; Meijer, J.; Becher, C. A cavity-based optical antenna for color centers in diamond. APL Photonics 2021, 6, 086102. [Google Scholar] [CrossRef]
- Lohrmann, A.; Pezzagna, S.; Dobrinets, I.; Spinicelli, P.; Jacques, V.; Roch, J.-F.; Meijer, J.; Zaitsev, A.M. Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 2011, 99, 251106. [Google Scholar] [CrossRef]
- Mizuochi, N.; Makino, T.; Kato, H.; Takeuchi, D.; Ogura, M.; Okushi, H.; Nothaft, M.; Neumann, P.; Gali, A.; Jelezko, F.; et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 2012, 6, 299–303. [Google Scholar] [CrossRef]
- Bray, K.; Fedyanin, D.Y.; Khramtsov, I.A.; Bilokur, M.O.; Regan, B.; Toth, M.; Aharonovich, I. Electrical excitation and charge-state conversion of silicon vacancy color centers in single-crystal diamond membranes. Appl. Phys. Lett. 2020, 116, 101103. [Google Scholar] [CrossRef]
- Eddy, C.R.; Gaskill, D.K. Silicon Carbide as a Platform for Power Electronics. Science 2009, 324, 1398–1400. [Google Scholar] [CrossRef]
- Masri, P. Silicon carbide and silicon carbide-based structures: The physics of epitaxy. Surf. Sci. Rep. 2002, 48, 1–51. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon carbide color centers for quantum applications. J. Phys. Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Sörman, E.; Son, N.T.; Chen, W.M.; Kordina, O.; Hallin, C.; Janzen, E. Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B 2000, 61, 2613–2620. [Google Scholar] [CrossRef]
- Baranov, P.G.; Bundakova, A.P.; Soltamova, A.A.; Orlinskii, S.B.; Borovykh, I.V.; Zondervan, R.; Verberk, R.; Schmidt, J. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 2011, 83, 125203. [Google Scholar] [CrossRef]
- Widmann, M.; Lee, S.-Y.; Rendler, T.; Son, N.T.; Fedder, H.; Paik, S.; Yang, L.-P.; Zhao, N.; Yang, S.; Booker, I.; et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 2015, 14, 164–168. [Google Scholar] [CrossRef]
- Nagy, R.; Niethammer, M.; Widmann, M.; Chen, Y.-C.; Udvarhelyi, P.; Bonato, C.; Hassan, J.U.; Karhu, R.; Ivanov, I.G.; Son, N.T.; et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 2019, 10, 1954. [Google Scholar] [CrossRef]
- Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G.V.; Dyakonov, V. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission. Phys. Rev. Appl. 2018, 9, 054006. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Niethammer, M.; Wrachtrup, J. Vector magnetometry based on S=3/2 electronic spins. Phys. Rev. B 2015, 92, 115201. [Google Scholar] [CrossRef]
- Abraham, J.B.S.; Gutgsell, C.; Todorovski, D.; Sperling, S.; Epstein, J.E.; Tien-Street, B.S.; Sweeney, T.M.; Wathen, J.J.; Pogue, E.A.; Brereton, P.G.; et al. Nanotesla Magnetometry with the Silicon Vacancy in Silicon Carbide. Phys. Rev. Appl. 2021, 15, 064022. [Google Scholar] [CrossRef]
- Kraus, H.; Soltamov, V.A.; Fuchs, F.; Simin, D.; Sperlich, A.; Baranov, P.G.; Astakhov, G.V.; Dyakonov, V. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci. Rep. 2015, 4, 5303. [Google Scholar] [CrossRef]
- Lohrmann, A.; Iwamoto, N.; Bodrog, Z.; Castelletto, S.; Ohshima, T.; Karle, T.; Gali, A.; Prawer, S.; McCallum, J.; Johnson, B. Single-photon emitting diode in silicon carbide. Nat. Commun. 2015, 6, 7783. [Google Scholar] [CrossRef]
- Lohrmann, A.; Johnson, B.C.; McCallum, J.C.; Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 2017, 80, 034502. [Google Scholar] [CrossRef]
- Umeda, T.; Ishoya, J.; Ohshima, T.; Morishita, N.; Itoh, H.; Gali, A. Identification of positively charged carbon antisite-vacancy pairs in4H−SiC. Phys. Rev. B 2007, 75, 245202. [Google Scholar] [CrossRef]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A silicon carbide room-temperature single-photon source. Nat. Mater. 2014, 13, 151–156. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhou, Y.; Li, K.; Wang, Z.; Peddibhotla, P.; Liu, F.; Bauerdick, S.; Rudzinski, A.; Liu, Z.; et al. Scalable Fabrication of Single Silicon Vacancy Defect Arrays in Silicon Carbide Using Focused Ion Beam. ACS Photonics 2017, 4, 1054–1059. [Google Scholar] [CrossRef]
- Ohshima, T.; Satoh, T.; Kraus, H.; Astakhov, G.V.; Dyakonov, V.V.; Baranov, P.G. Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications. J. Phys. D Appl. Phys. 2018, 51, 333002. [Google Scholar] [CrossRef]
- Yan, F.-F.; Yi, A.-L.; Wang, J.-F.; Li, Q.; Yu, P.; Zhang, J.-X.; Gali, A.; Wang, Y.; Xu, J.-S.; Ou, X.; et al. Room-temperature coherent control of implanted defect spins in silicon carbide. Npj Quantum Inf. 2020, 6, 38. [Google Scholar] [CrossRef]
- Radulaski, M.; Widmann, M.; Niethammer, M.; Zhang, J.L.; Lee, S.-Y.; Rendler, T.; Lagoudakis, K.G.; Son, N.T.; Janzén, E.; Ohshima, T.; et al. Scalable Quantum Photonics with Single Color Centers in Silicon Carbide. Nano Lett. 2017, 17, 1782–1786. [Google Scholar] [CrossRef]
- Fuchs, F.; Soltamov, V.A.; Väth, S.; Baranov, P.G.; Mokhov, E.N.; Astakhov, G.V.; Dyakonov, V. Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 2013, 3, 1637. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Salter, P.S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian, P.; et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett. 2019, 19, 2377–2383. [Google Scholar] [CrossRef]
- Wang, J.-F.; Yan, F.-F.; Li, Q.; Liu, Z.-H.; Liu, H.; Guo, G.-P.; Guo, L.-P.; Zhou, X.; Cui, J.-M.; Wang, J.; et al. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Phys. Rev. Lett. 2020, 124, 223601. [Google Scholar] [CrossRef]
- Sato, S.-I.; Narahara, T.; Abe, Y.; Hijikata, Y.; Umeda, T.; Ohshima, T. Formation of nitrogen-vacancy centers in 4H-SiC and their near infrared photoluminescence properties. J. Appl. Phys. 2019, 126, 083105. [Google Scholar] [CrossRef]
- Wolfowicz, G.; Anderson, C.P.; Diler, B.; Poluektov, O.G.; Heremans, F.J.; Awschalom, D.D. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 2020, 6, eaaz1192. [Google Scholar] [CrossRef]
- Ou, H.; Shi, X.; Lu, Y.; Kollmuss, M.; Steiner, J.; Tabouret, V.; Syväjärvi, M.; Wellmann, P.; Chaussende, D. Novel Photonic Applications of Silicon Carbide. Materials 2023, 16, 1014. [Google Scholar] [CrossRef]
- Sardi, F.; Kornher, T.; Widmann, M.; Kolesov, R.; Schiller, F.; Reindl, T.; Hagel, M.; Wrachtrup, J. Scalable production of solid-immersion lenses for quantum emitters in silicon carbide. Appl. Phys. Lett. 2020, 117, 022105. [Google Scholar] [CrossRef]
- Crook, A.L.; Anderson, C.P.; Miao, K.C.; Bourassa, A.; Lee, H.; Bayliss, S.L.; Bracher, D.O.; Zhang, X.; Abe, H.; Ohshima, T.; et al. Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control. Nano Lett. 2020, 20, 3427–3434. [Google Scholar] [CrossRef]
- Bracher, D.O.; Zhang, X.; Hu, E.L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl. Acad. Sci. USA 2017, 114, 4060–4065. [Google Scholar] [CrossRef]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H.; et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Davies, G. The optical properties of luminescence centres in silicon. Phys. Rep. 1989, 176, 83–188. [Google Scholar] [CrossRef]
- Safonov, A.N.; Lightowlers, E.C.; Davies, G.; Leary, P.; Jones, R.; Öberg, S. Interstitial-Carbon Hydrogen Interaction in Silicon. Phys. Rev. Lett. 1996, 77, 4812–4815. [Google Scholar] [CrossRef]
- Beaufils, C.; Redjem, W.; Rousseau, E.; Jacques, V.; Kuznetsov, A.Y.; Raynaud, C.; Voisin, C.; Benali, A.; Herzig, T.; Pezzagna, S.; et al. Optical properties of an ensemble of G-centers in silicon. Phys. Rev. B 2018, 97, 035303. [Google Scholar] [CrossRef]
- Rotem, E.; Shainline, J.M.; Xu, J.M. Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth. Opt. Express 2007, 15, 14099–14106. [Google Scholar] [CrossRef]
- Murata, K.; Yasutake, Y.; Nittoh, K.-I.; Fukatsu, S.; Miki, K. High-density G-centers, light-emitting point defects in silicon crystal. AIP Adv. 2011, 1, 032125. [Google Scholar] [CrossRef]
- Redjem, W.; Durand, A.; Herzig, T.; Benali, A.; Pezzagna, S.; Meijer, J.; Kuznetsov, A.Y.; Nguyen, H.S.; Cueff, S.; Gérard, J.-M.; et al. Single artificial atoms in silicon emitting at telecom wavelengths. Nat. Electron. 2020, 3, 738–743. [Google Scholar] [CrossRef]
- Hollenbach, M.; Berencén, Y.; Kentsch, U.; Helm, M.; Astakhov, G.V. Engineering telecom single-photon emitters in silicon for scalable quantum photonics. Opt. Express 2020, 28, 26111–26121. [Google Scholar] [CrossRef]
- Udvarhelyi, P.; Somogyi, B.; Thiering, G.; Gali, A. Identification of a Telecom Wavelength Single Photon Emitter in Silicon. Phys. Rev. Lett. 2021, 127, 196402. [Google Scholar] [CrossRef]
- Chartrand, C.; Bergeron, L.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Simmons, S.; Thewalt, M.L.W. Highly enriched Si28 reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B 2018, 98, 195201. [Google Scholar] [CrossRef]
- Lee, K.M.; O’Donnell, K.P.; Weber, J.; Cavenett, B.C.; Watkins, G.D. Optical Detection of Magnetic Resonance for a Deep-Level Defect in Silicon. Phys. Rev. Lett. 1982, 48, 37–40. [Google Scholar] [CrossRef]
- Buckley, S.M.; Tait, A.N.; Moody, G.; Primavera, B.; Olson, S.; Herman, J.; Silverman, K.L.; Rao, S.P.; Nam, S.W.; Mirin, R.P.; et al. Optimization of photoluminescence from W centers in silicon-on-insulator. Opt. Express 2020, 28, 16057–16072. [Google Scholar] [CrossRef]
- Udvarhelyi, P.; Pershin, A.; Deák, P.; Gali, A. An L-band emitter with quantum memory in silicon. Npj Comput. Mater. 2022, 8, 262. [Google Scholar] [CrossRef]
- MacQuarrie, E.; Chartrand, C.; Higginbottom, D.; Morse, K.; A Karasyuk, V.; Roorda, S.; Simmons, S. Generating T centres in photonic silicon-on-insulator material by ion implantation. New J. Phys. 2021, 23, 103008. [Google Scholar] [CrossRef]
- Dhaliah, D.; Xiong, Y.; Sipahigil, A.; Griffin, S.M.; Hautier, G. First-principles study of the T center in silicon. Phys. Rev. Mater. 2022, 6, L053201. [Google Scholar] [CrossRef]
- Higginbottom, D.B.; Kurkjian, A.T.K.; Chartrand, C.; Kazemi, M.; Brunelle, N.A.; MacQuarrie, E.R.; Klein, J.R.; Lee-Hone, N.R.; Stacho, J.; Ruether, M.; et al. Optical observation of single spins in silicon. Nature 2022, 607, 266–270. [Google Scholar] [CrossRef]
- Bergeron, L.; Chartrand, C.; Kurkjian, A.T.K.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Thewalt, M.L.W.; Simmons, S. Silicon-Integrated Telecommunications Photon-Spin Interface. PRX Quantum 2020, 1, 020301. [Google Scholar] [CrossRef]
- Baron, Y.; Durand, A.; Udvarhelyi, P.; Herzig, T.; Khoury, M.; Pezzagna, S.; Meijer, J.; Robert-Philip, I.; Abbarchi, M.; Hartmann, J.-M.; et al. Detection of Single W-Centers in Silicon. ACS Photonics 2022, 9, 2337–2345. [Google Scholar] [CrossRef]
- Davies, G.; Lightowlers, E.C.; Ciechanowska, Z.E. The 1018 meV (W or I1) vibronic band in silicon. J. Phys. C Solid State Phys. 1987, 20, 191–205. [Google Scholar] [CrossRef]
- Giri, P.K. Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon. Semicond. Sci. Technol. 2005, 20, 638–644. [Google Scholar] [CrossRef]
- Nakamura, M.; Nagai, S. Influence of high-energy electron irradiation on the formation and annihilation of the photoluminescence W center and the center’s origin in a proton-implanted silicon crystal. Phys. Rev. B 2002, 66, 155204. [Google Scholar] [CrossRef]
- Kirkpatrick, C.G.; Noonan, J.R.; Streetman, B.G. Recombination luminescence from ion implanted silicon. Radiat. Eff. 1976, 30, 97–106. [Google Scholar] [CrossRef]
- Davies, G.; Oates, A.S.; Newman, R.C.; Woolley, R.; Lightowlers, E.C.; Binns, M.J.; Wilkes, J.G. Carbon-related radiation damage centres in Czochralski silicon. J. Phys. C: Solid State Phys. 1986, 19, 841–855. [Google Scholar] [CrossRef]
- Kürner, W.; Sauer, R.; Dörnen, A.; Thonke, K. Structure of the 0.767-eV oxygen-carbon luminescence defect in 450 °C thermally annealed Czochralski-grown silicon. Phys. Rev. B 1989, 39, 13327–13337. [Google Scholar] [CrossRef]
- Bean, A.; Newman, R.; Smith, R. Electron irradiation damage in silicon containing carbon and oxygen. J. Phys. Chem. Solids 1970, 31, 739–751. [Google Scholar] [CrossRef]
- Ishikawa, T.; Koga, K.; Itahashi, T.; Itoh, K.M.; Vlasenko, L.S. Optical properties of triplet states of excitons bound to interstitial-carbon interstitial-oxygen defects in silicon. Phys. Rev. B 2011, 84, 115204. [Google Scholar] [CrossRef]
- Durand, A.; Baron, Y.; Redjem, W.; Herzig, T.; Benali, A.; Pezzagna, S.; Meijer, J.; Kuznetsov, A.Y.; Gérard, J.-M.; Robert-Philip, I.; et al. Broad Diversity of Near-Infrared Single-Photon Emitters in Silicon. Phys. Rev. Lett. 2021, 126, 083602. [Google Scholar] [CrossRef]
- Baron, Y.; Durand, A.; Herzig, T.; Khoury, M.; Pezzagna, S.; Meijer, J.; Robert-Philip, I.; Abbarchi, M.; Hartmann, J.-M.; Reboh, S.; et al. Single G centers in silicon fabricated by co-implantation with carbon and proton. Appl. Phys. Lett. 2022, 121, 084003. [Google Scholar] [CrossRef]
- Hollenbach, M.; Klingner, N.; Jagtap, N.S.; Bischoff, L.; Fowley, C.; Kentsch, U.; Hlawacek, G.; Erbe, A.; Abrosimov, N.V.; Helm, M.; et al. Wafer-scale nanofabrication of telecom single-photon emitters in silicon. Nat. Commun. 2022, 13, 7683. [Google Scholar] [CrossRef] [PubMed]
- Zhiyenbayev, Y.; Redjem, W.; Ivanov, V.; Qarony, W.; Papapanos, C.; Simoni, J.; Liu, W.; Jhuria, K.; Tan, L.Z.; Schenkel, T.; et al. Scalable manufacturing of quantum light emitters in silicon under rapid thermal annealing. Opt. Express 2023, 31, 8352–8362. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ivanov, V.; Jhuria, K.; Ji, Q.; Persaud, A.; Redjem, W.; Simoni, J.; Zhiyenbayev, Y.; Kante, B.; Lopez, J.G.; et al. Quantum Emitter Formation Dynamics and Probing of Radiation-Induced Atomic Disorder in Silicon. Phys. Rev. Appl. 2023, 20, 014058. [Google Scholar] [CrossRef]
- Davies, G.; Kun, K.T.; Reade, T. Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon. Phys. Rev. B 1991, 44, 12146–12157. [Google Scholar] [CrossRef] [PubMed]
- Andrini, G.; Zanelli, G.; Ditalia Tchernij, S.; Corte, E.; Hernandez, E.N.; Verna, A.; Cocuzza, M.; Bernardi, E.; Virzi, S.; Traina, P.; et al. Study of W centers formation in silicon upon ion implantation and rapid thermal annealing. In Proceedings of the 2023 IEEE Photonics Society Summer Topicals Meeting Series (SUM), Sicily, Italy, 17–19 July 2023. [Google Scholar] [CrossRef]
- Redjem, W.; Amsellem, A.J.; Allen, F.I.; Benndorf, G.; Bin, J.; Bulanov, S.; Esarey, E.; Feldman, L.C.; Fernandez, J.F.; Lopez, J.G.; et al. Defect engineering of silicon with ion pulses from laser acceleration. Commun. Mater. 2023, 4, 22. [Google Scholar] [CrossRef]
- Andrini, G.; Zanelli, G.; Ditalia Tchernij, S.; Corte, E.; Hernandez, E.N.; Verna, A.; Cocuzza, M.; Bernardi, E.; Virzì, S.; Traina, P.; et al. Efficient activation of telecom emitters in silicon upon ns pulsed laser annealing. arXiv 2023, arXiv:2304.10132. [Google Scholar]
- Quard, H.; Khoury, M.; Wang, A.; Herzig, T.; Meijer, J.; Pezzagna, S.; Wood, T. Femtosecond laser induced creation of G and W-centers in silicon-on-insulator substrates. arXiv 2023, arXiv:2304.03551. [Google Scholar]
- Skolnick, M.S.; Cullis, A.G.; Webber, H. Defect photoluminescence from pulsed-laser-annealed ion-implanted Si. Appl. Phys. Lett. 1981, 38, 464–466. [Google Scholar] [CrossRef]
- Skolnick; Cullis, A.G.; Webber, H. Defect photoluminescence from Si laser annealed over a wide temperature range. J. Lumin. 1981, 24–25, 39–42. [Google Scholar] [CrossRef]
- Ristori, A.; Khoury, M.; Salvalaglio, M.; Filippatos, A.; Amato, M.; Herzig, T.; Meijer, J.; Pezzagna, S.; Hannani, D.; Bollani, M.; et al. Strain Engineering of the Electronic States of Silicon-Based Quantum Emitters. Adv. Opt. Mater. 2023, 12, 2301608. [Google Scholar] [CrossRef]
- Hollenbach, M.; Jagtap, N.S.; Fowley, C.; Baratech, J.; Guardia-Arce, V.; Kentsch, U.; Eichler-Volf, A.; Abrosimov, N.V.; Erbe, A.; Shin, C.; et al. Metal-assisted chemically etched silicon nanopillars hosting telecom photon emitters. J. Appl. Phys. 2022, 132, 033101. [Google Scholar] [CrossRef]
- Buckley, S.; Chiles, J.; McCaughan, A.N.; Moody, G.; Silverman, K.L.; Stevens, M.J.; Mirin, R.P.; Nam, S.W.; Shainline, J.M. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Appl. Phys. Lett. 2017, 111, 141101. [Google Scholar] [CrossRef]
- Tait, A.; Buckley, S.; Chiles, J.; McCaughan, A.N.; Olson, S.; Rao, S.P.; Nam, S.W.; Mirin, R.; Shainline, J. Microring resonator-coupled photoluminescence from silicon W centers. J. Phys. Photonics 2020, 2, 045001. [Google Scholar] [CrossRef]
- Prabhu, M.; Errando-Herranz, C.; De Santis, L.; Christen, I.; Chen, C.; Gerlach, C.; Englund, D. Individually addressable and spectrally programmable artificial atoms in silicon photonics. Nat. Commun. 2023, 14, 2380. [Google Scholar] [CrossRef]
- Vyas, K.; Espinosa, D.H.G.; Hutama, D.; Jain, S.K.; Mahjoub, R.; Mobini, E.; Awan, K.M.; Lundeen, J.; Dolgaleva, K. Group III-V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 2022, 7, 2097020. [Google Scholar] [CrossRef]
- Parto, K.; Azzam, S.I.; Lewis, N.; Patel, S.D.; Umezawa, S.; Watanabe, K.; Taniguchi, T.; Moody, G. Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators. Nano Lett. 2022, 22, 9748–9756. [Google Scholar] [CrossRef] [PubMed]
- Hersee, S.D.; Sun, X.; Wang, X. The Controlled Growth of GaN Nanowires. Nano Lett. 2006, 6, 1808–1811. [Google Scholar] [CrossRef] [PubMed]
- Mnaymneh, K.; Dalacu, D.; McKee, J.; Lapointe, J.; Haffouz, S.; Weber, J.F.; Northeast, D.B.; Poole, P.J.; Aers, G.C.; Williams, R.L. On-Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides. Adv. Quantum Technol. 2019, 3, 201900021. [Google Scholar] [CrossRef]
- Wang, X.-D.; Zhu, Y.-F.; Jin, T.-T.; Ou, W.-W.; Ou, X.; Zhang, J.-X. Waveguide-coupled deterministic quantum light sources and post-growth engineering methods for integrated quantum photonics. Chip 2022, 1, 100018. [Google Scholar] [CrossRef]
- Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017, 32, 023001. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Hane, K.; Shi, Z.; Yan, J. GaN-based integrated photonics chip with suspended LED and waveguide. Opt. Commun. 2018, 415, 43–47. [Google Scholar] [CrossRef]
- Gromovyi, M.; El Kurdi, M.; Checoury, X.; Herth, E.; Tabataba-Vakili, F.; Bhat, N.; Courville, A.; Semond, F.; Boucaud, P. Low-loss GaN-on-insulator platform for integrated photonics. Opt. Express 2022, 30, 20737–20749. [Google Scholar] [CrossRef]
- Zhang, Y.; McKnight, L.; Engin, E.; Watson, I.M.; Cryan, M.J.; Gu, E.; Thompson, M.G.; Calvez, S.; O’brien, J.L.; Dawson, M.D. GaN directional couplers for integrated quantum photonics. Appl. Phys. Lett. 2011, 99, 161119. [Google Scholar] [CrossRef]
- Berhane, A.M.; Jeong, K.; Bodrog, Z.; Fiedler, S.; Schröder, T.; Triviño, N.V.; Palacios, T.; Gali, A.; Toth, M.; Englund, D.; et al. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride. Adv. Mater. 2017, 29, 12. [Google Scholar] [CrossRef]
- Berhane, A.M.; Jeong, K.-Y.; Bradac, C.; Walsh, M.; Englund, D.; Toth, M.; Aharonovich, I. Photophysics of GaN single-photon emitters in the visible spectral range. Phys. Rev. B 2018, 97, 165202. [Google Scholar] [CrossRef]
- Nguyen, M.; Zhu, T.; Kianinia, M.; Massabuau, F.; Aharonovich, I.; Toth, M.; Oliver, R.; Bradac, C. Effects of microstructure and growth conditions on quantum emitters in gallium nitride. APL Mater. 2019, 7, 081106. [Google Scholar] [CrossRef]
- Bishop, S.G.; Hadden, J.P.; Hekmati, R.; Cannon, J.K.; Langbein, W.W.; Bennett, A.J. Enhanced light collection from a gallium nitride color center using a near index-matched solid immersion lens. Appl. Phys. Lett. 2022, 120, 114001. [Google Scholar] [CrossRef]
- Nguyen, M.A.P.; Hite, J.; Mastro, M.A.; Kianinia, M.; Toth, M.; Aharonovich, I. Site control of quantum emitters in gallium nitride by polarity. Appl. Phys. Lett. 2021, 118, 021103. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Rasmita, A.; Kim, S.; Berhane, A.; Bodrog, Z.; Adamo, G.; Gali, A.; Aharonovich, I.; Gao, W.-B. Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 2018, 4, eaar3580. [Google Scholar] [CrossRef]
- Meunier, M.; Eng, J.J.H.; Mu, Z.; Chenot, S.; Brändli, V.; de Mierry, P.; Gao, W.; Zúñiga-Pérez, J. Telecom single-photon emitters in GaN operating at room temperature: Embedment into bullseye antennas. Nanophotonics 2023, 12, 1405–1419. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Sun, X.; Schuck, C.; Fong, K.Y.; Tang, H.X. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 2012, 14, 095014. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, F.; Fang, Z.; Zhang, S.; Li, Q.; Li, M.; Kang, J.; Zhang, J.; Shen, S.; Wu, B.; et al. Bright room temperature near-infrared single-photon emission from single point defects in the AlGaN film. Appl. Phys. Lett. 2021, 118, 131103. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Xie, N.; Yang, Q.; Xu, F.; Shen, B.; Shi, J.-J.; Jiang, D.; Dou, X.; Yu, T.; et al. Single-Photon Emission from Point Defects in Aluminum Nitride Films. J. Phys. Chem. Lett. 2020, 11, 2689–2694. [Google Scholar] [CrossRef]
- Bishop, S.G.; Hadden, J.P.; Alzahrani, F.D.; Hekmati, R.; Huffaker, D.L.; Langbein, W.W.; Bennett, A.J. Room-Temperature Quantum Emitter in Aluminum Nitride. ACS Photonics 2020, 7, 1636–1641. [Google Scholar] [CrossRef]
- Nieto Hernández, E.; Yağcı, H.B.; Pugliese, V.; Aprà, P.; Cannon, J.K.; Bishop, S.G.; Forneris, J. Fabrication of quantum emitters in aluminium nitride by Al-ion implantation and thermal annealing. arXiv 2023, arXiv:2310.20540. [Google Scholar]
- Wang, X.J.; Zhao, S.; Fang, H.H.; Xing, R.; Chai, Y.; Li, X.Z.; Sun, H.B. Quantum Emitters with Narrow Band and High Debye–Waller Factor in Aluminum Nitride Written by Femtosecond Laser. Nano Lett. 2023, 23, 2743. [Google Scholar] [CrossRef]
- Tu, Y.; Tang, Z.; Zhao, X.G.; Chen, Y.; Zhu, Z.Q.; Chu, J.H.; Fang, J.C. A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application. Appl. Phys. Lett. 2013, 103, 072103. [Google Scholar] [CrossRef]
- Liu, X.; Bruch, A.W.; Gong, Z.; Lu, J.; Surya, J.B.; Zhang, L.; Wang, J.; Yan, J.; Tang, H.X. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 2018, 5, 1279–1282. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Zhu, S.; Fu, Y.H.; Zhu, Y.; Lee, L.Y.T. Aluminium nitride integrated photonics: A review. Nanophotonics 2021, 10, 2347–2387. [Google Scholar] [CrossRef]
- Lu, T.-J.; Lienhard, B.; Jeong, K.-Y.; Moon, H.; Iranmanesh, A.; Grosso, G.; Englund, D.R. Bright High-Purity Quantum Emitters in Aluminum Nitride Integrated Photonics. ACS Photonics 2020, 7, 2650–2657. [Google Scholar] [CrossRef]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Senichev, A.; Peana, S.; Martin, Z.O.; Yesilyurt, O.; Sychev, D.; Lagutchev, A.S.; Boltasseva, A.; Shalaev, V.M. Silicon Nitride Waveguides with Intrinsic Single-Photon Emitters for Integrated Quantum Photonics. ACS Photonics 2022, 9, 3357–3365. [Google Scholar] [CrossRef]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef]
- Abdi, M.; Chou, J.-P.; Gali, A.; Plenio, M.B. Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis. ACS Photonics 2018, 5, 1967–1976. [Google Scholar] [CrossRef]
- Castelletto, S.; A Inam, F.; Sato, S.-I.; Boretti, A. Hexagonal boron nitride: A review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein J. Nanotechnol. 2020, 11, 740–769. [Google Scholar] [CrossRef]
- Hayee, F.; Yu, L.; Zhang, J.L.; Ciccarino, C.J.; Nguyen, M.; Marshall, A.F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T.F.; et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539. [Google Scholar] [CrossRef]
- Gottscholl, A.; Kianinia, M.; Soltamov, V.; Orlinskii, S.; Mamin, G.; Bradac, C.; Kasper, C.; Krambrock, K.; Sperlich, A.; Toth, M.; et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 2020, 19, 540–545. [Google Scholar] [CrossRef]
- Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.; et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328. [Google Scholar] [CrossRef]
- Gale, A.; Scognamiglio, D.; Zhigulin, I.; Whitefield, B.; Kianinia, M.; Aharonovich, I.; Toth, M. Manipulating the Charge State of Spin Defects in Hexagonal Boron Nitride. Nano Lett. 2023, 23, 6141–6147. [Google Scholar] [CrossRef] [PubMed]
- Haykal, A.; Tanos, R.; Minotto, N.; Durand, A.; Fabre, F.; Li, J.; Edgar, J.H.; Ivády, V.; Gali, A.; Michel, T.; et al. Decoherence of V spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 2022, 13, 4347. [Google Scholar] [CrossRef] [PubMed]
- Kianinia, M.; Regan, B.; Tawfik, S.A.; Tran, T.T.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Solid-State Quantum System Operating at 800 K. ACS Photonics 2017, 4, 768–773. [Google Scholar] [CrossRef]
- Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D.K.; Furchi, M.M.; Jarillo-Herrero, P.; Ford, M.J.; Aharonovich, I.; Englund, D. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 2017, 8, 705. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A.; Doherty, M.W.; Aharonovich, I.; Kubanek, A. Solid-state single photon source with Fourier transform limited lines at room temperature. Phys. Rev. B 2020, 101, 081401. [Google Scholar] [CrossRef]
- Huang, Y.; Dang, Z.; He, X.; Fang, Z. Engineering of single-photon emitters in hexagonal boron nitride [Invited]. Chin. Opt. Lett. 2022, 20, 032701. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, H.; Wang, H.; Zhu, X.; Chen, L.; Gao, W.; Liu, C.; Yin, H. Defect engineering of hexagonal boron nitride nanosheets via hydrogen plasma irradiation. Appl. Surf. Sci. 2022, 593, 153386. [Google Scholar] [CrossRef]
- Hou, S.; Birowosuto, M.D.; Umar, S.; Anicet, M.A.; Tay, R.Y.; Coquet, P.; Tay, B.K.; Wang, H.; Teo, E.H.T. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater. 2018, 5, 015010. [Google Scholar] [CrossRef]
- Gao, X.; Pandey, S.; Kianinia, M.; Ahn, J.; Ju, P.; Aharonovich, I.; Shivaram, N.; Li, T. Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride. ACS Photonics 2021, 8, 994–1000. [Google Scholar] [CrossRef]
- Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J.; et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779. [Google Scholar] [CrossRef]
- Guo, N.-J.; Liu, W.; Li, Z.-P.; Yang, Y.-Z.; Yu, S.; Meng, Y.; Wang, Z.-A.; Zeng, X.-D.; Yan, F.-F.; Li, Q.; et al. Generation of Spin Defects by Ion Implantation in Hexagonal Boron Nitride. ACS Omega 2022, 7, 1733–1739. [Google Scholar] [CrossRef]
- Gu, R.; Wang, L.; Zhu, H.; Han, S.; Bai, Y.; Zhang, X.; Li, B.; Qin, C.; Liu, J.; Guo, G.; et al. Engineering and Microscopic Mechanism of Quantum Emitters Induced by Heavy Ions in hBN. ACS Photonics 2021, 8, 2912–2922. [Google Scholar] [CrossRef]
- Proscia, N.V.; Shotan, Z.; Jayakumar, H.; Reddy, P.; Cohen, C.; Dollar, M.; Alkauskas, A.; Doherty, M.; Meriles, C.A.; Menon, V.M. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 2018, 5, 1128–1134. [Google Scholar] [CrossRef]
- Sajid, A.; Ford, M.J.; Reimers, J.R. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep. Prog. Phys. 2020, 83, 044501. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552–567. [Google Scholar] [CrossRef]
- Li, C.; Fröch, J.E.; Nonahal, M.; Tran, T.N.; Toth, M.; Kim, S.; Aharonovich, I. Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides. ACS Photonics 2021, 8, 2966–2972. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Skalli, A.; Gyger, S.; Nurizzo, M.; Schweickert, L.; Zadeh, I.E.; Svedendahl, M.; Steinhauer, S.; Zwiller, V. Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide. Adv. Quantum Technol. 2021, 4, 2100032. [Google Scholar] [CrossRef]
- Vogl, T.; Lecamwasam, R.; Buchler, B.C.; Lu, Y.; Lam, P.K. Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics 2019, 6, 1955–1962. [Google Scholar] [CrossRef]
- Häußler, S.; Bayer, G.; Waltrich, R.; Mendelson, N.; Li, C.; Hunger, D.; Aharonovich, I.; Kubanek, A. Tunable Fiber-Cavity Enhanced Photon Emission from Defect Centers in hBN. Adv. Opt. Mater. 2021, 9, 2002218. [Google Scholar] [CrossRef]
- Fröch, J.E.; Li, C.; Chen, Y.; Toth, M.; Kianinia, M.; Kim, S.; Aharonovich, I. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. Small 2022, 18, 2104805. [Google Scholar] [CrossRef]
- Li, X.; Scully, R.A.; Shayan, K.; Luo, Y.; Strauf, S. Near-Unity Light Collection Efficiency from Quantum Emitters in Boron Nitride by Coupling to Metallo-Dielectric Antennas. ACS Nano 2019, 13, 6992–6997. [Google Scholar] [CrossRef]
- Peyskens, F.; Chakraborty, C.; Muneeb, M.; Van Thourhout, D.; Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 2019, 10, 4435. [Google Scholar] [CrossRef]
- Glushkov, E.; Mendelson, N.; Chernev, A.; Ritika, R.; Lihter, M.; Zamani, R.R.; Comtet, J.; Navikas, V.; Aharonovich, I.; Radenovic, A. Direct Growth of Hexagonal Boron Nitride on Photonic Chips for High-Throughput Characterization. ACS Photonics 2021, 8, 2033–2040. [Google Scholar] [CrossRef]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S.; et al. Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits. J. Light. Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Wang, R.N.; He, J.; Raja, A.S.; Liu, T.; Engelsen, N.J.; Kippenberg, T.J. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 2021, 12, 2236. [Google Scholar] [CrossRef]
- Lu, X.; Moille, G.; Rao, A.; Westly, D.A.; Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 2021, 15, 131–136. [Google Scholar] [CrossRef]
- Liu, J.; Raja, A.S.; Karpov, M.; Ghadiani, B.; Pfeiffer, M.H.; Du, B.; Engelsen, N.J.; Guo, H.; Zervas, M.; Kippenberg, T.J. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 2018, 5, 1347–1353. [Google Scholar] [CrossRef]
- Senichev, A.; Martin, Z.O.; Peana, S.; Sychev, D.; Xu, X.; Lagutchev, A.S.; Boltasseva, A.; Shalaev, V.M. Room-temperature single-photon emitters in silicon nitride. Sci. Adv. 2021, 7, eabj0627. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Patra, B.; van Dijk, J.P.G.; Samkharadze, N.; Subramanian, S.; Corna, A.; Wuetz, B.P.; Jeon, C.; Sheikh, F.; Juarez-Hernandez, E.; et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 2021, 593, 205–210. [Google Scholar] [CrossRef]
- Aaronson, S.; Arkhipov, A. The computational complexity of linear optics. In Proceedings of the STOC’11: Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; p. 333. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Nanodiamonds: Emerging face of future nanotechnology. Carbon 2019, 143, 678–699. [Google Scholar] [CrossRef]
- Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.J.; Walsworth, R.L.; Lukin, M.D.; Park, H. Quantum sensors for biomedical applications. Nat. Rev. Phys. 2023, 5, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Belser, S.; Hart, J.; Gu, Q.; Shanahan, L.; Knowles, H.S. Opportunities for diamond quantum metrology in biological systems. Appl. Phys. Lett. 2023, 123, 020501. [Google Scholar] [CrossRef]
- Sahoo, S.; Davydov, V.A.; Agafonov, V.N.; Bogdanov, S.I. Hybrid quantum nanophotonic devices with color centers in nanodiamonds. Opt. Mater. Express 2023, 13, 191–217. [Google Scholar] [CrossRef]
- Ngan, K.; Zhan, Y.; Dory, C.; Vučković, J.; Sun, S. Quantum Photonic Circuits Integrated with Color Centers in Designer Nanodiamonds. Nano Lett. 2023, 23, 9360–9366. [Google Scholar] [CrossRef]
- Fu, K.-M.C.; Santori, C.; Barclay, P.E.; Beausoleil, R.G. Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 2010, 96, 121907. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022. [Google Scholar] [CrossRef]
- You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9, 2673–2692. [Google Scholar] [CrossRef]
- Kambs, B.; Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 2018, 20, 115003. [Google Scholar] [CrossRef]
- Sipahigil, A.; Jahnke, K.D.; Rogers, L.J.; Teraji, T.; Isoya, J.; Zibrov, A.S.; Jelezko, F.; Lukin, M.D. Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Phys. Rev. Lett. 2014, 113, 113602. [Google Scholar] [CrossRef]
ZPL (nm) | T (K) | Excited State Lifetime (ns) | FWHM at Operational Temperature (nm) | Single Emitter Saturation Count Rate (kcps) | Spin Manipulation | Integration of SPs with Photonic Structures | References | ||
---|---|---|---|---|---|---|---|---|---|
Silicon Carbide | VSi | 858.2, 862, 917 | RT | ~5 | <100 | ~10 | Yes | Yes | [74,75,76,77,78,79,80,96] |
CSiVC | 650–675 | RT | 1.2 | >100 | 2 k | [74,84,86] | |||
NV | 1150–1350 | RT | 2 | 1–3 | 17.4 | Yes | [93,94] | ||
V4+ | 1279–1387 | RT | >70 | Yes | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrini, G.; Amanti, F.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Dao, T.H.; De Matteis, F.; Demontis, V.; et al. Solid-State Color Centers for Single-Photon Generation. Photonics 2024, 11, 188. https://doi.org/10.3390/photonics11020188
Andrini G, Amanti F, Armani F, Bellani V, Bonaiuto V, Cammarata S, Campostrini M, Dao TH, De Matteis F, Demontis V, et al. Solid-State Color Centers for Single-Photon Generation. Photonics. 2024; 11(2):188. https://doi.org/10.3390/photonics11020188
Chicago/Turabian StyleAndrini, Greta, Francesco Amanti, Fabrizio Armani, Vittorio Bellani, Vincenzo Bonaiuto, Simone Cammarata, Matteo Campostrini, Thu Ha Dao, Fabio De Matteis, Valeria Demontis, and et al. 2024. "Solid-State Color Centers for Single-Photon Generation" Photonics 11, no. 2: 188. https://doi.org/10.3390/photonics11020188
APA StyleAndrini, G., Amanti, F., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Dao, T. H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., Gunnella, R., Iadanza, S., ... Vitali, V. (2024). Solid-State Color Centers for Single-Photon Generation. Photonics, 11(2), 188. https://doi.org/10.3390/photonics11020188