Hybrid Integrated Silicon Photonics Based on Nanomaterials
Abstract
:1. Introduction
2. Hybrid Integrated Photonic Platforms
2.1. Semiconducting Nanostructures and Integration Techniques
- Direct growth, involving growing the nanostructures directly on the target substrate using methods such as chemical vapor deposition (CVD) or molecular beam epitaxy (MBE) [82]. For instance, InAs/GaAs quantum dots have been grown on Si substrates [83] by MBE for the on-chip integration of lasers. This offers unparalleled control over nanowire position and orientation, leading to high-quality interfaces between the nanowires and the substrate. This method provides intriguing advantages, such as high material quality and the possibility to control the growth positions of the nanostructures. However, it is typically limited to specific substrate materials compatible with the nanowires growth conditions and can be challenging for achieving large-scale or complex nanowire patterns.
- Contact printing, a method involving physically pressing the 1D nanostructures grown on a source substrate against the target substrate. An example of application of such method is reported in [84], where the deposition of aligned Ge nanowires on a Si/SiO2 substrate is demonstrated. Contact printing is a rather cost-effective method which has relevant advantages, including speed and ease of execution, allowing the transfer of a large number of nanostructures to a target substrate. However, its disadvantages include lack of fine control over nanostructures’ positioning on the target and risk of physically damaging the sample due to mechanical stress. Overall, this approach is suitable for large-scale transfers but offers limited control over the precise positioning and alignment of individual nanowires.
- Fluidic assembly, leveraging the power of fluid flow or external forces like electric fields to guide nanowires suspended in a liquid to specific locations on the target substrate [85], as demonstrated with ZnSe nanowires deposited in m-sized areas with dense packing of the order of m−2 [86]. This approach allows for some control over the nanowire position and density within the fluid and enables the creation of more complex nanowire patterns compared to contact printing. However, achieving accurate alignment can be challenging, and careful control over the fluid flow and external forces is crucial to avoid harming the nanowires. Overall, fluidic assembly of 1D nanostructures provides notable advantages, such as the possibility to manipulate a large number of elements and compatibility with large-scale processing, but is limited in terms of fine control over the positioning of each individual nanostructure, and often relies on costly or difficult to manipulate liquids.
- Pick-and-place methods, utilizing micro-probes to physically manipulate and deposit individual nanostructures onto the target substrate [87]. For instance, Zadeh et al. [88] have demonstrated deterministic positioning of nanowire quantum dots employing a nanomanipulation setup composed of a tungsten tip mounted on a movable stage under a high resolution optical microscope. This technique’s slow nature and labor intensity render it impractical for large-scale production. Despite this disadvantage, deterministic pick-and-place of individual nanostructures provides incomparable control over each nanostructure’s positioning and orientation, providing a unique advantage in terms of device architecture control. For this reason, it is the golden standard for the realization of complex geometries for proof of concept and fundamental demonstrators.
- Transfer printing, involving employing an intermediate stamp, often made of a polymer, to transfer nanostructures grown on a donor substrate to a target substrate [89]. The work from Chang et al. [90], in which aligned ZnO nanowires have been transferred on a host substrate using a PDMS stamp, is illustrative of such method. The main advantages provided by this technique are greater control over nanowire positioning, cost efficiency and the possibility to deterministically place both individual nanostructures as well as arrays of nanostructures onto target substrates with relatively high precision. However, the main disadvantages of transfer printing are represented by potential contamination or residue from the stamp and limitations imposed by the adhesion properties of the stamp are factors to consider.
- Epitaxial growth transfer, where the 2D material is directly grown on a sacrificial substrate that shares a similar crystal structure, employed, for instance, for the growth of monolayer MoS2 on silicon waveguides [93]. Subsequently, the sacrificial layer is selectively etched, enabling the 2D material to be transferred onto a target substrate with minimal lattice mismatch. Main advantages of epitaxial growth transfer are the high quality of the resulting materials and the possibility to selectively grow nanostructures on specific locations thanks to assisted growth techniques. However, this method is limited by the growth conditions of the specific material under consideration, which may not be compatible with the target substrate (e.g., growth temperature may be too high, resulting in damage to the target substrate). Overall, this method offers excellent control over the crystallographic orientation and minimizes interface defects, making it ideal for specific device applications. However, it is limited to compatible material combinations and can be more complex to implement compared to other techniques.
- Wet transfer, involving submerging the growth substrate with the 2D material in a sacrificial layer, typically a polymer film [92,94]. The sacrificial layer is then lifted onto the desired target substrate, followed by dissolving the sacrificial material using a solvent, leaving the 2D material deposited on the target. Exploiting this method, large-scale transfer of CVD-grown graphene using polyvinyl alcohol polymer foils was demonstrated without relevant losses in material quality in terms of residual doping [95]. This method has the major advantage of being cost-effective and straightforward, but simultaneously suffers from several disadvantages: indeed, it can introduce surface contamination and limit the choice of solvents compatible with both the sacrificial layer and the 2D material. Additionally, for some applications the use of solutions processes involving solvents may hamper device functionalities and induce materials degradation.
- Dry transfer, aiming to eliminate the use of liquids and minimizing the risk of contamination. This approach involves using a polymer stamp to pick up the 2D material from the growth substrate and subsequently transfer it to the target [96]. This approach allowed for the successful transfer of epitaxial graphene grown on SiC to SiO2, GaN and Al2O3 target substrates [97]. This method shines for several advantages, including cleanliness and the possibility to deterministically position 2D materials onto target substrates thanks to proper alignment of the polymeric stamp. On the other hand, dry transfer also has several disadvantages. For instance, it is a time-consuming technique and is hardly compatible with large-scale processing, making it viable only at laboratory scale.
- Electrochemical delamination, utilizing an electric field applied through an electrolyte solution to selectively etch the sacrificial layer, releasing the 2D material that can then be transferred to the target substrate [98,99]. Notably, this technique has been employed to transfer an ordered array of deterministically positioned CVD-grown graphene flakes to enable large-scale device fabrication [100]. This method offers precise control over the transfer process and minimal surface contamination. Indeed, electrochemical delamination features the promising advantage of greatly preserving material quality, resulting in optimal values of relevant parameters, e.g., electrical mobility. However, it requires careful control of the electrical parameters and is limited to specific growth and target substrate combinations. Additionally, electrochemical delamination shares the same disadvantage as wet transfer, namely, the presence of solvents and liquids which may not be compatible with specific material platforms.
2.2. One-dimensional Nanostructures Integration in Integrated Photonic Platforms
2.3. Two-dimensional Materials Integration in Integrated Photonic Platforms
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photonics Res. 2022, 10, A106. [Google Scholar] [CrossRef]
- Bernabé, S.; Wilmart, Q.; Hasharoni, K.; Hassan, K.; Thonnart, Y.; Tissier, P.; Désières, Y.; Olivier, S.; Tekin, T.; Szelag, B. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid-State Electron. 2021, 179, 107928. [Google Scholar] [CrossRef]
- Sabella, R. Silicon Photonics for 5G and Future Networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–11. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Light. Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Vlasov, Y.A.; McNab, S.J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004, 12, 1622. [Google Scholar] [CrossRef]
- Marchetti, R.; Vitali, V.; Lacava, C.; Cristiani, I.; Charbonnier, B.; Muffato, V.; Fournier, M.; Minzioni, P. Group-velocity dispersion in SOI-based channel waveguides with reduced-height. Opt. Express 2017, 25, 9761. [Google Scholar] [CrossRef]
- Wang, X.; Shi, W.; Yun, H.; Grist, S.; Jaeger, N.A.F.; Chrostowski, L. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Opt. Express 2012, 20, 15547. [Google Scholar] [CrossRef]
- Chen, C.; Youngblood, N.; Peng, R.; Yoo, D.; Mohr, D.A.; Johnson, T.W.; Oh, S.H.; Li, M. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Lett. 2017, 17, 985–991. [Google Scholar] [CrossRef]
- Bogaerts, W.; Dumon, P.; Van Thourhout, D.; Taillaert, D.; Jaenen, P.; Wouters, J.; Beckx, S.; Wiaux, V.; Baets, R.G. Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1394–1401. [Google Scholar] [CrossRef]
- Dai, D.; Liu, L.; Gao, S.; Xu, D.X.; He, S. Polarization management for silicon photonic integrated circuits. Laser Photonics Rev. 2013, 7, 303–328. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2011, 6, 47–73. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Patel, D.; Ghosh, S.; Chagnon, M.; Samani, A.; Veerasubramanian, V.; Osman, M.; Plant, D.V. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 2015, 23, 14263. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Badoni, D.; Gunnella, R.; Salamon, A.; Bonaiuto, V.; Liberali, V.; Salina, G.; De Matteis, F.; Mai, A.; Salvato, M.; Colavecchi, L.; et al. Design and test of silicon photonic Mach-Zehnder interferometers for data transmission applications. In Proceedings of the 2020 Italian Conference on Optics and Photonics (ICOP), Parma, Italy, 9–11 September 2020. [Google Scholar] [CrossRef]
- Wang, X.; Shen, W.; Li, W.; Liu, Y.; Yao, Y.; Du, J.; Song, Q.; Xu, K. High-speed silicon photonic Mach–Zehnder modulator at 2 μm. Photonics Res. 2021, 9, 535. [Google Scholar] [CrossRef]
- Saghaei, H.; Elyasi, P.; Karimzadeh, R. Design, fabrication, and characterization of Mach–Zehnder interferometers. Photonics Nanostructures - Fundam. Appl. 2019, 37, 100733. [Google Scholar] [CrossRef]
- Izhaky, N.; Morse, M.T.; Koehl, S.; Cohen, O.; Rubin, D.; Barkai, A.; Sarid, G.; Cohen, R.; Paniccia, M.J. Development of CMOS-Compatible Integrated Silicon Photonics Devices. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1688–1698. [Google Scholar] [CrossRef]
- Stojanović, V.; Ram, R.J.; Popović, M.; Lin, S.; Moazeni, S.; Wade, M.; Sun, C.; Alloatti, L.; Atabaki, A.; Pavanello, F.; et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 2018, 26, 13106. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, D. Multimode silicon photonic waveguide corner-bend. Opt. Express 2020, 28, 9062–9071. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, L.; Wang, Y.; Zhang, M.; Xie, Y.; Dai, D. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photon. Res. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- Sibson, P.; Kennard, J.E.; Stanisic, S.; Erven, C.; O’Brien, J.L.; Thompson, M.G. Integrated silicon photonics for high-speed quantum key distribution. Optica 2017, 4, 172. [Google Scholar] [CrossRef]
- Adcock, J.C.; Bao, J.; Chi, Y.; Chen, X.; Bacco, D.; Gong, Q.; Oxenlowe, L.K.; Wang, J.; Ding, Y. Advances in Silicon Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–24. [Google Scholar] [CrossRef]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2019, 14, 273–284. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; O’Brien, J.L.; Thompson, M.G. Silicon Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 390–402. [Google Scholar] [CrossRef]
- Harris, N.C.; Bunandar, D.; Pant, M.; Steinbrecher, G.R.; Mower, J.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Englund, D. Large-scale quantum photonic circuits in silicon. Nanophotonics 2016, 5, 456–468. [Google Scholar] [CrossRef]
- Lukin, D.M.; Guidry, M.A.; Vučković, J. Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects. PRX Quantum 2020, 1, 020102. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Piergentili, P.; Amanti, F.; Andrini, G.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Cornia, S.; Dao, T.H.; et al. Quantum Information with Integrated Photonics. Appl. Sci. 2023, 14, 387. [Google Scholar] [CrossRef]
- Andrini, G.; Amanti, F.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Dao, T.H.; De Matteis, F.; Demontis, V.; et al. Solid-State Color Centers for Single-Photon Generation. Photonics 2024, 11, 188. [Google Scholar] [CrossRef]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef]
- Politi, A.; Matthews, J.; Thompson, M.; O’Brien, J. Integrated Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1673–1684. [Google Scholar] [CrossRef]
- Santagati, R.; Silverstone, J.W.; Strain, M.J.; Sorel, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; et al. Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 2017, 19, 114006. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Ma, C.; Sacher, W.D.; Tang, Z.; Mikkelsen, J.C.; Yang, Y.; Xu, F.; Thiessen, T.; Lo, H.K.; Poon, J.K.S. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 2016, 3, 1274. [Google Scholar] [CrossRef]
- Avesani, M.; Calderaro, L.; Schiavon, M.; Stanco, A.; Agnesi, C.; Santamato, A.; Zahidy, M.; Scriminich, A.; Foletto, G.; Contestabile, G.; et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf. 2021, 7. [Google Scholar] [CrossRef]
- Dong, P.; Chen, Y.K.; Duan, G.H.; Neilson, D.T. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Najafi, F.; Mower, J.; Harris, N.C.; Bellei, F.; Dane, A.; Lee, C.; Hu, X.; Kharel, P.; Marsili, F.; Assefa, S.; et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 2015, 6, 5873. [Google Scholar] [CrossRef] [PubMed]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Bowers, J. Trends, Possibilities and Limitations of Silicon Photonic Integrated Circuits and Devices. In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, San Jose, CA, USA, 22–25 September 2013. [Google Scholar] [CrossRef]
- Bruck, R.; Vynck, K.; Lalanne, P.; Mills, B.; Thomson, D.J.; Mashanovich, G.Z.; Reed, G.T.; Muskens, O.L. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 2016, 3, 396. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, B.; Michel, J. On-chip light sources for silicon photonics. Light. Sci. Appl. 2015, 4, e358. [Google Scholar] [CrossRef]
- Wang, Z.; Abbasi, A.; Dave, U.; De Groote, A.; Kumari, S.; Kunert, B.; Merckling, C.; Pantouvaki, M.; Shi, Y.; Tian, B.; et al. Novel Light Source Integration Approaches for Silicon Photonics. Laser Photonics Rev. 2017, 11, 1700063. [Google Scholar] [CrossRef]
- Bogaerts, W.; Chrostowski, L. Silicon Photonics Circuit Design: Methods, Tools and Challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Han, Y.; Park, H.; Bowers, J.; Lau, K.M. Recent advances in light sources on silicon. Adv. Opt. Photonics 2022, 14, 404. [Google Scholar] [CrossRef]
- Caridad, J.M.; McCloskey, D.; Rossella, F.; Bellani, V.; Donegan, J.F.; Krstić, V. Effective Wavelength Scaling of and Damping in Plasmonic Helical Antennae. ACS Photonics 2015, 2, 675–679. [Google Scholar] [CrossRef]
- You, J.; Luo, Y.; Yang, J.; Zhang, J.; Yin, K.; Wei, K.; Zheng, X.; Jiang, T. Hybrid/Integrated Silicon Photonics Based on 2D Materials in Optical Communication Nanosystems. Laser Photonics Rev. 2020, 14, 2000239. [Google Scholar] [CrossRef]
- Dorfner, D.; Zabel, T.; Hürlimann, T.; Hauke, N.; Frandsen, L.; Rant, U.; Abstreiter, G.; Finley, J. Photonic crystal nanostructures for optical biosensing applications. Biosens. Bioelectron. 2009, 24, 3688–3692. [Google Scholar] [CrossRef]
- Daher, M.G.; Jaroszewicz, Z.; Zyoud, S.H.; Panda, A.; Hasane Ahammad, S.; Abd-Elnaby, M.; Eid, M.M.A.; Rashed, A.N.Z. Design of a novel detector based on photonic crystal nanostructure for ultra-high performance detection of cells with diabetes. Opt. Quantum Electron. 2022, 54, 701. [Google Scholar] [CrossRef]
- Tooghi, A.; Fathi, D.; Eskandari, M. High-performance perovskite solar cell using photonic–plasmonic nanostructure. Sci. Rep. 2020, 10, 11248. [Google Scholar] [CrossRef] [PubMed]
- García, P.D.; Lodahl, P. Physics of Quantum Light Emitters in Disordered Photonic Nanostructures. Ann. Der Phys. 2017, 529, 1600351. [Google Scholar] [CrossRef]
- Kianinia, M.; Xu, Z.Q.; Toth, M.; Aharonovich, I. Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures. Appl. Phys. Rev. 2022, 9, 011306. [Google Scholar] [CrossRef]
- Heck, M.J.R.; Bauters, J.F.; Davenport, M.L.; Doylend, J.K.; Jain, S.; Kurczveil, G.; Srinivasan, S.; Tang, Y.; Bowers, J.E. Hybrid Silicon Photonic Integrated Circuit Technology. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6100117. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, L. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511–2532. [Google Scholar] [CrossRef]
- de la Mata, M.; Magén, C.; Caroff, P.; Arbiol, J. Atomic Scale Strain Relaxation in Axial Semiconductor III–V Nanowire Heterostructures. Nano Lett. 2014, 14, 6614–6620. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.H.; Chang, H.C.; Wang, H.H.; Chen, S.Y.; Lin, C.A.; Chen, S.A.; Chueh, Y.L.; He, J.H. Significant Efficiency Enhancement of Hybrid Solar Cells Using Core–Shell Nanowire Geometry for Energy Harvesting. ACS Nano 2011, 5, 9501–9510. [Google Scholar] [CrossRef]
- Wang, Z.; Nabet, B. Nanowire Optoelectronics. Nanophotonics 2015, 4, 491–502. [Google Scholar] [CrossRef]
- Laucht, A.; Hohls, F.; Ubbelohde, N.; Fernando Gonzalez-Zalba, M.; Reilly, D.J.; Stobbe, S.; Schröder, T.; Scarlino, P.; Koski, J.V.; Dzurak, A.; et al. Roadmap on quantum nanotechnologies. Nanotechnology 2021, 32, 162003. [Google Scholar] [CrossRef] [PubMed]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Blakesley, J.C.; See, P.; Shields, A.J.; Kardynał, B.E.; Atkinson, P.; Farrer, I.; Ritchie, D.A. Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes. Phys. Rev. Lett. 2005, 94, 067401. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Huang, Y. Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 2010, 70, 341–353. [Google Scholar] [CrossRef]
- Miao, W.; Wang, L.; Mu, X.; Wang, J. The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications. J. Mater. Chem. C 2021, 9, 13600–13616. [Google Scholar] [CrossRef]
- Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350. [Google Scholar] [CrossRef]
- Ivchenko, E.L.; Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 2002, 66, 155404. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Zhou, O.Z. Applications of Carbon Nanotubes. In Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2001; pp. 391–425. [Google Scholar] [CrossRef]
- Bolotin, K. Electronic transport in graphene: Towards high mobility. In Graphene; Elsevier: Amsterdam, The Netherlands, 2014; pp. 199–227. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Mueller, T.; Lin, Y.m.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef]
- Kang, M.; Kim, B.; Ryu, S.H.; Jung, S.W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K.S. Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides. Nano Lett. 2017, 17, 1610–1615. [Google Scholar] [CrossRef]
- Zheng, W.; Jiang, Y.; Hu, X.; Li, H.; Zeng, Z.; Wang, X.; Pan, A. Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications. Adv. Opt. Mater. 2018, 6, 1800420. [Google Scholar] [CrossRef]
- Kang, D.; Kim, M.; Shim, J.; Jeon, J.; Park, H.; Jung, W.; Yu, H.; Pang, C.; Lee, S.; Park, J. High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping. Adv. Funct. Mater. 2015, 25, 4219–4227. [Google Scholar] [CrossRef]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef]
- Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef]
- Kimouche, A.; Ervasti, M.M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P.M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177. [Google Scholar] [CrossRef]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Chen, L.; Lu, W.; Lieber, C.M. Semiconductor Nanowire Growth and Integration. In Semiconductor Nanowires; The Royal Society of Chemistry: London, UK, 2014; pp. 1–53. [Google Scholar] [CrossRef]
- Wu, J.; Tang, M.; Liu, H. III–V Quantum dot Lasers Epitaxially Grown on Si Substrates; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–39. [Google Scholar] [CrossRef]
- Fan, Z.; Ho, J.C.; Jacobson, Z.A.; Yerushalmi, R.; Alley, R.L.; Razavi, H.; Javey, A. Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Lett. 2007, 8, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Burhan Mohamed, K.; Ghaderi, S.; Hallaj, R.; Hassanzadeh, A. Langmuir–Blodgett films of magnetic nanowires. Mater. Sci. Eng. B 2023, 296, 116649. [Google Scholar] [CrossRef]
- Acharya, S.; Panda, A.; Belman, N.; Efrima, S.; Golan, Y. A Semiconductor-Nanowire Assembly of Ultrahigh Junction Density by the Langmuir–Blodgett Technique. Adv. Mater. 2006, 18, 210–213. [Google Scholar] [CrossRef]
- Chen, B.; Wu, H.; Xin, C.; Dai, D.; Tong, L. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun. 2017, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, I.E.; Elshaari, A.W.; Jöns, K.D.; Fognini, A.; Dalacu, D.; Poole, P.J.; Reimer, M.E.; Zwiller, V. Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. Nano Lett. 2016, 16, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kim, D.R.; Zheng, X. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. USA 2010, 107, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Hong, F.C.N. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 2009, 20, 195302. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Kim, S.; Son, S.; Kang, S.; Lim, J.; Lee, D.K.; Ahn, B.; Whang, D.; Yu, H.K.; Lee, J. An Eco-Friendly, CMOS-Compatible Transfer Process for Large-Scale CVD-Graphene. Adv. Mater. Interfaces 2019, 6, 1900084. [Google Scholar] [CrossRef]
- Gao, L.; Ni, G.X.; Liu, Y.; Liu, B.; Castro Neto, A.H.; Loh, K.P. Face-to-face transfer of wafer-scale graphene films. Nature 2013, 505, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Kuppadakkath, A.; Najafidehaghani, E.; Gan, Z.; Tuniz, A.; Ngo, G.Q.; Knopf, H.; Löchner, F.J.F.; Abtahi, F.; Bucher, T.; Shradha, S.; et al. Direct growth of monolayer MoS2 on nanostructured silicon waveguides. Nanophotonics 2022, 11, 4397–4408. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Shivayogimath, A.; Whelan, P.R.; Mackenzie, D.M.; Luo, B.; Huang, D.; Luo, D.; Wang, M.; Gammelgaard, L.; Shi, H.; Ruoff, R.S.; et al. Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chem. Mater. 2019, 31, 2328–2336. [Google Scholar] [CrossRef]
- Lock, E.H.; Baraket, M.; Laskoski, M.; Mulvaney, S.P.; Lee, W.K.; Sheehan, P.E.; Hines, D.R.; Robinson, J.T.; Tosado, J.; Fuhrer, M.S.; et al. High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Lett. 2011, 12, 102–107. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Anderson, T.J.; Culbertson, J.C.; Jernigan, G.G.; Hobart, K.D.; Kub, F.J.; Tadjer, M.J.; Tedesco, J.L.; Hite, J.K.; Mastro, M.A.; et al. Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ACS Nano 2010, 4, 1108–1114. [Google Scholar] [CrossRef]
- Verguts, K.; Coroa, J.; Huyghebaert, C.; De Gendt, S.; Brems, S. Graphene delamination using ‘electrochemical methods’: An ion intercalation effect. Nanoscale 2018, 10, 5515–5521. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K.P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927–9933. [Google Scholar] [CrossRef] [PubMed]
- Miseikis, V.; Bianco, F.; David, J.; Gemmi, M.; Pellegrini, V.; Romagnoli, M.; Coletti, C. Deterministic patterned growth of high-mobility large-crystal graphene: A path towards wafer scale integration. 2D Materials 2017, 4, 021004. [Google Scholar] [CrossRef]
- Kaplan, A.E.; Vitali, V.; Demontis, V.; Rossella, F.; Fontana, A.; Cornia, S.; Petropoulos, P.; Bellani, V.; Lacava, C.; Cristiani, I. Polarization Control in Integrated Silicon Waveguides Using Semiconductor Nanowires. Nanomaterials 2022, 12, 2438. [Google Scholar] [CrossRef]
- Soudi, S.; Rahman, B.M.A. Design of compact polarization rotator using simple silicon nanowires. Appl. Opt. 2014, 53, 8071. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Li, C.; Han, Y.; Hu, H.; Cheng, Z.; Wang, J.; Liu, T. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing. Optics Express 2019, 27, 19188–19195. [Google Scholar] [CrossRef]
- Stamatiadis, C.; Vyrsokinos, K.; Stampoulidis, L.; Lazarou, I.; Maziotis, A.; Bolten, J.; Karl, M.; Wahlbrink, T.; De Heyn, P.; Sheng, Z.; et al. Silicon-on-Insulator Nanowire Resonators for Compact and Ultra-High Speed All-Optical Wavelength Converters. J. Light. Technol. 2011, 29, 3054–3060. [Google Scholar] [CrossRef]
- Gaufrès, E.; Izard, N.; Noury, A.; Le Roux, X.; Rasigade, G.; Beck, A.; Vivien, L. Light Emission in Silicon from Carbon Nanotubes. ACS Nano 2012, 6, 3813–3819. [Google Scholar] [CrossRef]
- Riaz, A.; Alam, A.; Selvasundaram, P.B.; Dehm, S.; Hennrich, F.; Kappes, M.M.; Krupke, R. Near-Infrared Photoresponse of Waveguide-Integrated Carbon Nanotube–Silicon Junctions. Adv. Electron. Mater. 2019, 5, 1800265. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, L.; Wu, W.; Cai, X.; Yang, F.; Xiu, H.; Wang, Y.; Zhang, Q.; Xin, X.; Zhang, F.; et al. Silicon Waveguide-Integrated Carbon Nanotube Photodetector with Low Dark Current and 48 GHz Bandwidth. ACS Nano 2023, 17, 7466–7474. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yang, L.; Liu, L.; Wang, S.; Peng, L.M. Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. ACS Nano 2020, 14, 7191–7199. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, M.; Sasaki, S.; Tateno, K.; Chen, E.; Nozaki, K.; Sergent, S.; Kuramochi, E.; Zhang, G.; Shinya, A.; Notomi, M. Hybrid Nanowire Photodetector Integrated in a Silicon Photonic Crystal. ACS Photonics 2020, 7, 3467–3473. [Google Scholar] [CrossRef]
- Bissinger, J.; Ruhstorfer, D.; Stettner, T.; Koblmüller, G.; Finley, J.J. Optimized waveguide coupling of an integrated III-V nanowire laser on silicon. J. Appl. Phys. 2019, 125, 243102. [Google Scholar] [CrossRef]
- Yi, R.; Zhang, X.; Zhang, F.; Gu, L.; Zhang, Q.; Fang, L.; Zhao, J.; Fu, L.; Tan, H.H.; Jagadish, C.; et al. Integrating a Nanowire Laser in an on-Chip Photonic Waveguide. Nano Lett. 2022, 22, 9920–9927. [Google Scholar] [CrossRef]
- Mnaymneh, K.; Dalacu, D.; McKee, J.; Lapointe, J.; Haffouz, S.; Weber, J.F.; Northeast, D.B.; Poole, P.J.; Aers, G.C.; Williams, R.L. On-Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides. Adv. Quantum Technol. 2019, 3, 1900021. [Google Scholar] [CrossRef]
- Mukhundhan, N.; Ajay, A.; Bissinger, J.; Finley, J.J.; Koblmüller, G. Purcell enhanced coupling of nanowire quantum emitters to silicon photonic waveguides. Opt. Express 2021, 29, 43068. [Google Scholar] [CrossRef]
- Kumar, S.; Bozhevolnyi, S.I. Single Photon Emitters Coupled to Plasmonic Waveguides: A Review. Adv. Quantum Technol. 2021, 4, 2100057. [Google Scholar] [CrossRef]
- Tan, H.; Du, L.; Yang, F.; Chu, W.; Zhan, Y. Two-dimensional materials in photonic integrated circuits: Recent developments and future perspectives. Chin. Opt. Lett. 2023, 21, 110007. [Google Scholar]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; et al. Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- Vaquero, D.; Clericò, V.; Salvador-Sánchez, J.; Quereda, J.; Diez, E.; Pérez-Muñoz, A.M. Ionic-Liquid Gating in Two-Dimensional TMDs: The Operation Principles and Spectroscopic Capabilities. Micromachines 2021, 12, 1576. [Google Scholar] [CrossRef] [PubMed]
- Prete, D.; Colosimo, A.; Demontis, V.; Medda, L.; Zannier, V.; Bellucci, L.; Tozzini, V.; Sorba, L.; Beltram, F.; Pisignano, D.; et al. Heat-Driven Iontronic Nanotransistors. Adv. Sci. 2023, 10, 2204120. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Paradisanos, I.; Liu, T.; Cadore, A.R.; Liu, J.; Churaev, M.; Wang, R.N.; Raja, A.S.; Javerzac-Galy, C.; Roelli, P.; et al. Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Lett. 2021, 21, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Datta, I.; Chae, S.H.; Bhatt, G.R.; Tadayon, M.A.; Li, B.; Yu, Y.; Park, C.; Park, J.; Cao, L.; Basov, D.N.; et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256–262. [Google Scholar] [CrossRef]
- Prete, D.; Demontis, V.; Zannier, V.; Rodriguez-Douton, M.J.; Guazzelli, L.; Beltram, F.; Sorba, L.; Rossella, F. Impact of electrostatic doping on carrier concentration and mobility in InAs nanowires. Nanotechnology 2021, 32, 145204. [Google Scholar] [CrossRef] [PubMed]
- Younas, R.; Zhou, G.; Hinkle, C.L. A perspective on the doping of transition metal dichalcogenides for ultra-scaled transistors: Challenges and opportunities. Appl. Phys. Lett. 2023, 122, 160504. [Google Scholar] [CrossRef]
- Ren, T.; Loh, K.P. On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. J. Appl. Phys. 2019, 125, 230901. [Google Scholar] [CrossRef]
- Amin, R.; Zhizhen, M.; Maiti, R.; Miscuglio, M.; Dalir, H.; Khurgin, J.B.; Sorger, V.J. A Guide for Material and Design Choices for Electro-Optic Modulators and recent 2D-Material Silicon Modulator Demonstrations. arXiv 2019, arXiv:1812.11096. [Google Scholar]
- Joshi, S.; Kaushik, B.K. Transition metal dichalcogenides integrated waveguide modulator and attenuator in silicon nitride platform. Nanotechnology 2020, 31, 435202. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Grosso, G.; Heuck, M.; Furchi, M.M.; Cao, Y.; Zheng, J.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D.K.; et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129. [Google Scholar] [CrossRef]
- Zhu, Z.; Yuan, J.; Zhou, H.; Hu, J.; Zhang, J.; Wei, C.; Yu, F.; Chen, S.; Lan, Y.; Yang, Y.; et al. Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides for Chip-Level Electronic–Photonic Integrated Circuits. ACS Photonics 2016, 3, 869–874. [Google Scholar] [CrossRef]
- Lee, H.S.; Luong, D.H.; Kim, M.S.; Jin, Y.; Kim, H.; Yun, S.; Lee, Y.H. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 2016, 7, 13663. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, S.; Vyrsokinos, K.; Kalavrouziotis, D.; Giannoulis, G.; Apostolopoulos, D.; Avramopoulos, H.; Zacharatos, F.; Hassan, K.; Weeber, J.C.; Markey, L.; et al. Merging Plasmonics and Silicon Photonics Towards Greener and Faster “Network-on-Chip” Solutions for Data Centers and High-Performance Computing Systems; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Rodríguez-Fortuño, F.J.; Espinosa-Soria, A.; Martínez, A. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. J. Opt. 2016, 18, 123001. [Google Scholar] [CrossRef]
- Sun, P.; Xu, P.; Zhu, K.; Zhou, Z. Silicon-Based Optoelectronics Enhanced by Hybrid Plasmon Polaritons: Bridging Dielectric Photonics and Nanoplasmonics. Photonics 2021, 8, 482. [Google Scholar] [CrossRef]
- Heni, W.; Kutuvantavida, Y.; Haffner, C.; Zwickel, H.; Kieninger, C.; Wolf, S.; Lauermann, M.; Fedoryshyn, Y.; Tillack, A.F.; Johnson, L.E.; et al. Silicon–Organic and Plasmonic–Organic Hybrid Photonics. ACS Photonics 2017, 4, 1576–1590. [Google Scholar] [CrossRef]
- Deng, B.; Liu, Z.; Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 2018, 31, 1800996. [Google Scholar] [CrossRef]
- De Fazio, D.; Purdie, D.G.; Ott, A.K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F.H.L.; et al. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano 2019, 13, 8926–8935. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Yu, Y.J.; Choi, H.; Choi, C.G. Graphene-based plasmonic photodetector for photonic integrated circuits. Opt. Express 2014, 22, 803. [Google Scholar] [CrossRef] [PubMed]
- Shiue, R.J.; Gao, Y.; Wang, Y.; Peng, C.; Robertson, A.D.; Efetov, D.K.; Assefa, S.; Koppens, F.H.L.; Hone, J.; Englund, D. High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. Nano Lett. 2015, 15, 7288–7293. [Google Scholar] [CrossRef]
- Schall, D.; Neumaier, D.; Mohsin, M.; Chmielak, B.; Bolten, J.; Porschatis, C.; Prinzen, A.; Matheisen, C.; Kuebart, W.; Junginger, B.; et al. 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics 2014, 1, 781–784. [Google Scholar] [CrossRef]
- Xiao, T.H.; Cheng, Z.; Goda, K. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology 2017, 28, 245201. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Choi, S.Y. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 2011, 19, 24557. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, X.; Zhang, X. Double-Layer Graphene Optical Modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhu, X.; Xiao, S.; Hu, H.; Frandsen, L.H.; Mortensen, N.A.; Yvind, K. Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene–Silicon Microring Resonator. Nano Lett. 2015, 15, 4393–4400. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Su, Z.; Huang, L.; Wu, Z.; Wang, X.; Zhang, Z.; Zhou, Z. Significantly High Modulation Efficiency of Compact Graphene Modulator Based on Silicon Waveguide. Sci. Rep. 2018, 8, 991. [Google Scholar] [CrossRef] [PubMed]
- Sorianello, V.; Contestabile, G.; Romagnoli, M. Graphene on Silicon Modulators. J. Light. Technol. 2020, 38, 2782–2789. [Google Scholar] [CrossRef]
- Giambra, M.A.; Mišeikis, V.; Pezzini, S.; Marconi, S.; Montanaro, A.; Fabbri, F.; Sorianello, V.; Ferrari, A.C.; Coletti, C.; Romagnoli, M. Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano 2021, 15, 3171–3187. [Google Scholar] [CrossRef]
- Abdollahi Shiramin, L.; Van Thourhout, D. Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 94–100. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J. Ultrabroadband Compact Graphene–Silicon TM-Pass Polarizer. IEEE Photonics J. 2017, 9, 7101310. [Google Scholar] [CrossRef]
- de Oliveira, R.E.P.; de Matos, C.J.S. Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters. Sci. Rep. 2015, 5, 16949. [Google Scholar] [CrossRef]
- Cammarata, S.; Fontana, A.; Kaplan, A.E.; Cornia, S.; Dao, T.H.; Lacava, C.; Demontis, V.; Iadanza, S.; Vitali, V.; De Matteis, F.; et al. Polarization Control in Integrated Graphene-Silicon Quantum Photonics Waveguides. Materials 2022, 15, 8739. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prete, D.; Amanti, F.; Andrini, G.; Armani, F.; Bellani, V.; Bonaiuto, V.; Cammarata, S.; Campostrini, M.; Cornia, S.; Dao, T.H.; et al. Hybrid Integrated Silicon Photonics Based on Nanomaterials. Photonics 2024, 11, 418. https://doi.org/10.3390/photonics11050418
Prete D, Amanti F, Andrini G, Armani F, Bellani V, Bonaiuto V, Cammarata S, Campostrini M, Cornia S, Dao TH, et al. Hybrid Integrated Silicon Photonics Based on Nanomaterials. Photonics. 2024; 11(5):418. https://doi.org/10.3390/photonics11050418
Chicago/Turabian StylePrete, Domenic, Francesco Amanti, Greta Andrini, Fabrizio Armani, Vittorio Bellani, Vincenzo Bonaiuto, Simone Cammarata, Matteo Campostrini, Samuele Cornia, Thu Ha Dao, and et al. 2024. "Hybrid Integrated Silicon Photonics Based on Nanomaterials" Photonics 11, no. 5: 418. https://doi.org/10.3390/photonics11050418
APA StylePrete, D., Amanti, F., Andrini, G., Armani, F., Bellani, V., Bonaiuto, V., Cammarata, S., Campostrini, M., Cornia, S., Dao, T. H., De Matteis, F., Demontis, V., Di Giuseppe, G., Ditalia Tchernij, S., Donati, S., Fontana, A., Forneris, J., Francini, R., Frontini, L., ... Vitali, V. (2024). Hybrid Integrated Silicon Photonics Based on Nanomaterials. Photonics, 11(5), 418. https://doi.org/10.3390/photonics11050418