A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling
Abstract
:1. Introduction
2. Theory and Simulation
3. Experiment
Optical System
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werle, P. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Yin, Z.; Tang, X. A review of energy bandgap engineering in III-V semiconductor alloys for mid-infrared laser applications. Solid State Electron. 2007, 51, 6–15. [Google Scholar] [CrossRef]
- Garnache, A.; Kachanov, A.A.; Stoeckel, F.; Planel, R. High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers. Opt. Lett. 1999, 24, 826–828. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: Potential and challenges. Anal. Bioanal. Chem. 2016, 408, 2875–2889. [Google Scholar] [CrossRef]
- Roth, S.; Nakata, Y.; Neuenschwander, B.; Xu, X.; Voisiat, B.; Gaponov, D.; GečYs, P.; Lavoute, L.; Silva, M.; Hideur, A. Material processing with ultra-short pulse lasers working in 2μm wavelength range. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX; SPIE: Amsterdam, The Netherlands, 2015; p. 935014. [Google Scholar]
- Ducanchez, A.; Cerutti, L.; Grech, P.; Genty, F.; Tournie, E. Mid-infrared Gasb-based Ep-vcsel Emitting At 2.63 μm. Electronicsletters 2009, 45, 265–267. [Google Scholar]
- Tournié, E.; Cerutti, L. Mid-Infrared Optoelectronics: Materials, Devices, and Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Helkey, R.; Saleh, A.A.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–15. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Achouche, M. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 2939503. [Google Scholar] [CrossRef]
- Yeh, S.-M.; Huang, S.-Y.; Cheng, W.-H. A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers. J. Light. Technol. 2005, 23, 1781. [Google Scholar]
- Yeh, S.-M.; Lu, Y.-K.; Huang, S.-Y.; Lin, H.-H.; Hsieh, C.-H.; Cheng, W.-H. A novel scheme of lensed fiber employing a quadrangular-pyramid-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers. J. Light. Technol. 2004, 22, 1374. [Google Scholar] [CrossRef]
- Das, B.; Maiti, A.K.; Gangopadhyay, S. Laser diode to single-mode circular core dispersion-shifted/dispersion-flattened fiber excitation via hyperbolic microlens on the fiber tip: Prediction of coupling efficiency by ABCD matrix formalism. Optik 2014, 125, 3277–3282. [Google Scholar] [CrossRef]
- Yu, Y.; Dou, W. ABCD matrix for reflection and refraction of Gaussian beams on the interface of an elliptic paraboloid. J. Infrared Millim. Terahertz Waves 2010, 31, 1304–1311. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, H.; Duan, J.-A. Allowable aperture considerations for laser diode coupling to cylindrical lensed fiber: Efficiency computation with ABCD matrix. Optik 2019, 185, 614–619. [Google Scholar] [CrossRef]
- Yang, H.M.; Chen, C.T.; Ro, R.; Liang, T.C. Investigation of the efficient coupling between a highly elliptical Gaussian profile output from a laser diode and a single mode fiber using a hyperbolic-shaped microlens. Opt. Laser Technol. 2010, 42, 918–926. [Google Scholar] [CrossRef]
- Perumal Sankar, S.; Hariharan, N.; Varatharajan, R. A novel method to increase the coupling efficiency of laser to single mode fibre. Wirel. Pers. Commun. 2016, 87, 419–430. [Google Scholar] [CrossRef]
- Kliros, G.S.; Divari, P.C. Coupling characteristics of laser diodes to high numerical aperture thermally expanded core fibers. J. Mater. Sci. Mater. Electron. 2009, 20, 59–62. [Google Scholar] [CrossRef]
- Kliros, G.; Tsironikos, N. Variational analysis of propagation characteristics in thermally diffused expanded core fibers. Optik 2005, 116, 365–374. [Google Scholar] [CrossRef]
- Nie, B.; Ruan, Y.; Yu, Y.; Guo, Q.; Fang, C.; Xi, J.; Tong, J.; Du, H. Achieving long distance sensing using semiconductor laser with optical feedback by operating at switching status. Sensors 2022, 22, 963. [Google Scholar] [CrossRef]
- Shterengas, L.; Kipshidze, G.; Hosoda, T.; Liang, R.; Feng, T.; Wang, M.; Stein, A.; Belenky, G. Cascade pumping of 1.9–3.3 μm type-i quantum well GaSb-based diode lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–8. [Google Scholar] [CrossRef]
- Shang, C.; Hughes, E.; Wan, Y.; Dumont, M.; Koscica, R.; Selvidge, J.; Herrick, R.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 2021, 8, 749–754. [Google Scholar] [CrossRef]
- Monge-Bartolome, L.; Cerba, T.; Díaz-Thomas, D.A.; Bahriz, M.; Calvo, M.R.; Boissier, G.; Baron, T.; Rodriguez, J.-B.; Cerutti, L.; Tournié, E. Etched-cavity GaSb laser diodes on a MOVPE GaSb-on-Si template. Opt. Express 2020, 28, 20785–20793. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, H.; Duan, J.-a. Review of the technology of a single mode fiber coupling to a laser diode. Opt. Fiber Technol. 2020, 55, 102097. [Google Scholar] [CrossRef]
- Spott, A.; Stanton, E.J.; Torres, A.; Davenport, M.L.; Canedy, C.L.; Vurgaftman, I.; Kim, M.; Kim, C.S.; Merritt, C.D.; Bewley, W.W. Interband cascade laser on silicon. Optica 2018, 5, 996–1005. [Google Scholar] [CrossRef]
- Yang, C.-A.; Xie, S.-W.; Zhang, Y.; Shang, J.-M.; Huang, S.-S.; Yuan, Y.; Shao, F.-H.; Zhang, Y.; Xu, Y.-Q.; Niu, Z.-C. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm. Appl. Phys. Lett. 2019, 114, 021102. [Google Scholar] [CrossRef]
- Ning, C.; Yu, T.; Liu, S.; Zhang, J.; Wang, L.; Liu, J.; Zhuo, N.; Zhai, S.; Li, Y.; Liu, F. Interband cascade lasers with short electron injector. Chin. Opt. Lett. 2022, 20, 022501. [Google Scholar] [CrossRef]
- Nguyen-Van, H.; Baranov, A.N.; Loghmari, Z.; Cerutti, L.; Rodriguez, J.-B.; Tournet, J.; Narcy, G.; Boissier, G.; Patriarche, G.; Bahriz, M. Quantum cascade lasers grown on silicon. Sci. Rep. 2018, 8, 7206. [Google Scholar] [CrossRef]
- Calvo, M.R.; Bartolomé, L.M.; Bahriz, M.; Boissier, G.; Cerutti, L.; Rodriguez, J.-B.; Tournié, E. Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon. Optica 2020, 7, 263–266. [Google Scholar] [CrossRef]
- Tournié, E.; Bartolome, L.M.; Calvo, M.R.; Loghmari, Z.; Díaz-Thomas, A.D.; Teissier, R.; Baranov, A.N.; Cerutti, L.; Rodriguez, J.B. Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates. Light Sci. Appl. 2022, 11, 13. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, J.; Li, N.; Yang, Z.; Li, S.; Li, S.; Wang, W.; Bayan, H.; Cheng, W.; Zhang, Y.; et al. A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling. Photonics 2024, 11, 108. https://doi.org/10.3390/photonics11020108
Liu Z, Wang J, Li N, Yang Z, Li S, Li S, Wang W, Bayan H, Cheng W, Zhang Y, et al. A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling. Photonics. 2024; 11(2):108. https://doi.org/10.3390/photonics11020108
Chicago/Turabian StyleLiu, Zhaohong, Jiayue Wang, Ning Li, Zhongwei Yang, Shaowen Li, Sensen Li, Wei Wang, Heshig Bayan, Weining Cheng, Yu Zhang, and et al. 2024. "A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling" Photonics 11, no. 2: 108. https://doi.org/10.3390/photonics11020108
APA StyleLiu, Z., Wang, J., Li, N., Yang, Z., Li, S., Li, S., Wang, W., Bayan, H., Cheng, W., Zhang, Y., Wu, Z., Sun, H., Xia, Y., Wang, Y., & Lu, Z. (2024). A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling. Photonics, 11(2), 108. https://doi.org/10.3390/photonics11020108