Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. The Preparation of PMMA Microspheres
2.3. The Preparation of PS Microspheres
2.4. Preparation of 3D PMMA Photonic Crystals
2.5. Preparation of 3D PS Photonic Crystals
2.6. Preparation of the AM-Based Photonic Hydrogel
2.7. The Optical Simulation of the Photonic Materials
3. Results
3.1. The Theory and Simulation of the Photonic Band Gap
3.2. The Feasibility of the Theorical and Simulated Photonic Band Gap
3.3. The Reflection Peaks of AM-Based Photonic Hydrogels
3.4. The Compressive Strain of the AM-Based Photonic Hydrogels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Tippets, C.A.; Donev, E.U.; Lopez, R. Structural colors: From natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 758–775. [Google Scholar] [CrossRef] [PubMed]
- Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D.L.; Buehler, M.J.; Ling, S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem. Rev. 2019, 119, 12279–12336. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tan, Z.; Fan, J.; Meng, Z.; Zhang, M.; Huang, B.; Jia, X.; Ma, F.; Zhu, W.; Wang, S.; et al. A mechanochromic optical sensor based on Bragg reflection for real-time monitoring of large-range sharp pressure fluctuations in aqueous fluids. J. Mater. Chem. C 2023, 11, 15419–15425. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed]
- Sajeev, J. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar]
- Asher, S.A.; Peteu, S.F.; Reese, C.E.; Lin, M.; Finegold, D. Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal. Bioanal. Chem. 2002, 373, 632–638. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Naydenova, I.; Fernando, D.C.V.; Blyth, J.; Lowe, C.R. Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chem. Rev. 2014, 114, 10654–10696. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Y.; Shang, L.; Wang, J.; Xie, Z.; Gu, Z. Microfluidic Synthesis of Barcode Particles for Multiplex Assays. Small 2015, 11, 151–174. [Google Scholar] [CrossRef]
- Aravindakshan, N.; Eftekhari, E.; Tan, S.H.; Li, X.; St John, J.; Nguyen, N.T.; Zhao, H.; Zhao, D.; Li, Q. Ensembles of Photonic Beads: Optical Properties and Enhanced Light—Matter Interactions. Adv. Opt. Mater. 2020, 8, 1901537. [Google Scholar] [CrossRef]
- Li, Z.; Yin, Y. Stimuli-Responsive Optical Nanomaterials. Adv. Mater. 2019, 31, e1807061. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sultan, U.; Goerlitzer, E.S.A.; Mbah, C.F.; Engel, M.; Vogel, N. Structural Color of Colloidal Clusters as a Tool to Investigate Structure and Dynamics. Adv. Funct. Mater. 2019, 30, 1907730. [Google Scholar] [CrossRef]
- Li, X.; Zhen, X.; Meng, S.; Xian, J.; Shao, Y.; Fu, X.; Li, D. Structuring β-Ga2O3 Photonic Crystal Photocatalyst for Efficient Degradation of Organic Pollutants. Environ. Sci. Technol. 2013, 47, 9911–9917. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, X.; Liu, C.; Chang, X.; Hu, X. Studies on the active radicals in synthesized inverse opal photonic crystal and its effect on photocatalytic removal of organic pollutants. J. Mol. Liq. 2020, 320, 114414. [Google Scholar] [CrossRef]
- Yu, J.; Caravaca, A.; Guillard, C.; Vernoux, P.; Zhou, L.; Wang, L.; Lei, J.; Zhang, J.; Liu, Y. Carbon Nitride Quantum Dots Modified TiO2 Inverse Opal Photonic Crystal for Solving Indoor VOCs Pollution. Catalysts 2021, 11, 464. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, S.; Chang, X.; Hu, J.; Wang, X. Effect of the combination of inverse opal photon superficial areaic crystal and heterojunction on active free radicals and its effect on the mechanism of photocatalytic removal of organic pollutants. Ceram. Int. 2023, 49, 27107–27116. [Google Scholar] [CrossRef]
- Men, D.; Liu, D.; Li, Y. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bull. 2016, 61, 1358–1371. [Google Scholar] [CrossRef]
- Gleiter, H.; Schimmel, T.; Hahn, H.J.N.T. Nanostructured solids—From nano-glasses to quantum transistors. Nano Today 2014, 9, 17–68. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, J.; Hu, D.; Ge, S.; Yin, Y.; Liu, T. A Review on the Research Progress of Nano Organic Friction Materials. Recent Pat. Nanotechnol. 2016, 10, 11–19. [Google Scholar] [CrossRef]
- Dang, X.; Song, Z.; Zhao, H. Signal amplified photoelectrochemical assay based on Polypyrrole/g-C3N4/WO3 inverse opal photonic crystals triple heterojunction assembled through sandwich-type recognition model. Sens. Actuators B Chem. 2020, 310, 127888. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.-R.; Pakchin, P.S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-S.; Jiang, S.-A.; Lin, J.-D.; Lee, C.-R. Bio-Inspired Design of Active Photo-Mechano-Chemically Dual-Responsive Photonic Film Based on Cholesteric Liquid Crystal Elastomers. J. Mater. Chem. C 2020, 8, 5517–5524. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 2020, 117, 202007032. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Long, Y.; Gao, J.M.; Song, K.; Yang, G. Label-free and pH-sensitive colorimetric materials for the sensing of urea. Nanoscale 2016, 8, 4458–4462. [Google Scholar] [CrossRef] [PubMed]
- Gun, Y.; Song, G.Y.; Quy, V.H.; Heo, J.; Lee, H.; Ahn, K.S.; Kang, S.H. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting. ACS Appl. Mater. Interfaces 2015, 7, 20292–20303. [Google Scholar] [CrossRef]
- Fenzl, C.; Hirsch, T.; Wolfbeis, O.S. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. Engl. 2014, 53, 3318–3335. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Pan, G.; Zhou, D.; Xu, W.; Zhu, J.; Wang, H.; Chen, C.; Song, H. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: Stable and efficient photoelectrochemical sensing of dopamine under visible irradiation. Nanoscale 2018, 10, 10505–10513. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Wang, M.; Ji, H.; Zhang, L.; Cheng, Q.; Qian, T.; Yan, C. Advancing the Electrochemistry of Gas-Involved Reactions through Theoretical Calculations and Simulations from Microscopic to Macroscopic. Adv. Funct. Mater. 2022, 32, 2208474. [Google Scholar] [CrossRef]
- Li, Z.; He, Z.; He, Y.; Lai, H.; Qi, X.; Zhao, Z.; Jin, T. ZnSe/Ta2O5 heterojunction with high carrier separation efficiency: Experimental and theoretical calculations. Appl. Surf. Sci. 2022, 593, 153456. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Liao, C.-H.; Hung, H.-Y.; Lee, J.-Y.; Lee, H.M. Nitron-derivative-based palladium carbene complexes: Structural characterization, theoretical calculations, and catalytic applications in the Mizoroki–Heck coupling reaction. RSC Adv. 2023, 13, 27434–27445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xue, M.; Fan, J.; Qiu, L.; Zheng, W.; Liu, Y.; Meng, Z. Flory–Huggins VOC Photonics Sensor Made of Cellulose Derivatives. ACS Appl. Mater. Interfaces 2022, 14, 10701–10711. [Google Scholar] [CrossRef] [PubMed]
- Toshihiko Baba, T.B.; Tomomi Matsuzaki, T.M. Theoretical Calculation of Photonic Gap in Semiconductor 2-Dimensional Photonic Crystals with Various Shapes of Optical Atoms. Jpn. J. Appl. Phys. 1995, 34, 4496. [Google Scholar] [CrossRef]
- Qiu, W.; Ndao, A.; Lu, H.; Bernal, M.-P.; Baida, F.I. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Opt. Express 2016, 24, 20196–20209. [Google Scholar] [CrossRef] [PubMed]
- Rusen, E.; Diacon, A.; Mocanu, A. Photonic crystals obtained by soap-free emulsion terpolymerization. Open Chem. 2014, 12, 126–130. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Liang, J.; Yuan, D.; Zhao, W. Research progress of poly(methyl methacrylate) microspheres: Preparation, functionalization and application. Eur. Polym. J. 2022, 175, 111379. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Z.; Yang, B. Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid. Interface Sci. 2009, 14, 103–114. [Google Scholar] [CrossRef]
- Ge, J.; Yin, Y. Responsive Photonic Crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Meng, Z.; Murtaza, G.; Zhang, N.; Wu, L.; Qiu, L. Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials. Photonics 2024, 11, 109. https://doi.org/10.3390/photonics11020109
Zheng W, Meng Z, Murtaza G, Zhang N, Wu L, Qiu L. Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials. Photonics. 2024; 11(2):109. https://doi.org/10.3390/photonics11020109
Chicago/Turabian StyleZheng, Wenxiang, Zihui Meng, Ghulam Murtaza, Niu Zhang, Lei Wu, and Lili Qiu. 2024. "Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials" Photonics 11, no. 2: 109. https://doi.org/10.3390/photonics11020109
APA StyleZheng, W., Meng, Z., Murtaza, G., Zhang, N., Wu, L., & Qiu, L. (2024). Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials. Photonics, 11(2), 109. https://doi.org/10.3390/photonics11020109