Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jomen, R.; Tanaka, F.; Akiba, T.; Ikeda, M.; Kiryu, K.; Matsushita, M.; Maenaka, H.; Dai, P.; Lu, S.; Uchida, S. Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission. Jpn. J. Appl. Phys. 2018, 57, 08RD12. [Google Scholar] [CrossRef]
- Komuro, Y.; Honda, S.; Kurooka, K.; Warigaya, R.; Tanaka, F.; Uchida, S. A 43.0% efficient GaInP photonic power converter with a distributed Bragg reflector under high-power 638 nm laser irradiation of 17 Wcm−2. Appl. Phys. Express 2021, 14, 052002. [Google Scholar] [CrossRef]
- Schubert, J.; Oliva, E.; Dimroth, F.; Guter, W.; Loeckenhoff, R.; Bett, A.W. High-Voltage GaAs Photovoltaic Laser Power Converters. IEEE Trans. Electron Devices 2009, 56, 170–175. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; He, Y.; Yu, S.; Dong, J. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Sci. Rep. 2016, 6, 38044. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-R.; Dong, J.-R.; He, Y.; Zhao, Y.-M.; Yu, S.-Z.; Xue, J.-P.; Xue, C.; Wang, J.; Lu, Y.-Q.; Ding, Y.-W. A six-junction GaAs laser power converter with different sizes of active aperture. Optoelectron. Lett. 2017, 13, 21–24. [Google Scholar] [CrossRef]
- Yin, J.; Sun, Y.; Yu, S.; Zhao, Y.; Li, R.; Dong, J. 1064 nm InGaAsP multi-junction laser power converters. J. Semicond. 2020, 41, 062303. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhao, Y.; Yu, S.; Dong, J.; Xue, J.; Xue, C.; Wang, J.; Lu, Y.; Ding, Y. Four-junction AlGaAs/GaAs laser power converter. J. Semicond. 2018, 39, 044003. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi (RRL) Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- Oliva, E.; Dimroth, F.; Bett, A.W. GaAs converters for high power densities of laser illumination. Prog. Photovolt. Res. Appl. 2008, 16, 289–295. [Google Scholar] [CrossRef]
- Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S.J. Efficiency limits of laser power converters for optical power transfer applications. J. Phys. D Appl. Phys. 2013, 46, 264006. [Google Scholar] [CrossRef]
- Fafard, S.; York, M.C.A.; Proulx, F.; Valdivia, C.E.; Wilkins, M.M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl. Phys. Lett. 2016, 108, 071101. [Google Scholar] [CrossRef]
- Fafard, S.; Proulx, F.; York, M.C.A.; Richard, L.S.; Provost, P.O.; Arès, R.; Aimez, V.; Masson, D.P. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl. Phys. Lett. 2016, 109, 131107. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Sorokina, S.V.; Potapovich, N.S.; Emelyanov, V.M.; Timoshina, N.K.; Andreev, V.M. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors 2016, 50, 1220–1224. [Google Scholar] [CrossRef]
- Olsen, L.C.; Huber, D.A.; Dunham, G.; Addis, F.W. High efficiency monochromatic GaAs solar cells. In Proceedings of the Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference—1991, Las Vegas, NV, USA, 7–11 October 1991; pp. 419–424. [Google Scholar]
- Krut, U.D.; Sudharsanan, R.; Isshiki, T.; King, R.; Karam, N.H. A 53% high efficiency GaAs vertically integrated multi-junction laser power converter. In Proceedings of the 65th DRC Device Research Conference, South Bend, IN, USA, 18–20 June 2007; art. no. 4373680. pp. 123–124. [Google Scholar]
- Andreev, V.; Khvostikov, V.; Kalinovsky, V.; Lantratov, V.; Grilikhes, V.; Rumyantsev, V.; Shvarts, M.; Fokanov, V.; Pavlov, A. High current density GaAs and GaSb photovoltaic cells for laser power beaming. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume 1, pp. 761–764. [Google Scholar]
- Peña, R.; Algora, C.; Anton, I. GaAs multiple photovoltaic converters with an efficiency of 45% for monochromatic illumination. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 228–231. [Google Scholar]
- Kalyuzhnyy, N.A.; Emelyanov, V.M.; Mintairov, S.A.; Shvarts, M.Z. InGaAs metamorphic laser (λ = 1064 nm) power converters with over 44% efficiency. AIP Conf. Proc. 2018, 2012, 110002. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, H.-B.; Lee, W.-H.; Jung, S.H.; Kim, C.Z.; Kim, H.; Lee, Y.T.; Kang, H.K. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol. Energy Mater. Sol. Cells 2019, 200, 109984. [Google Scholar] [CrossRef]
- Law, H.D.; Ng, W.W.; Nakano, K.; Dapkus, P.D.; Stone, D.R. High Efficiency InGaAsP Photovoltaic Power Converter. IEEE Electron Device Lett. 1981, 2, 26–27. [Google Scholar] [CrossRef]
- Panchak, A.N.; Pokrovskiy, P.V.; Malevskiy, D.A.; Larionov, V.R.; Shvarts, M.Z. High-Efficiency Conversion of High-Power-Density Laser Radiation. Tech. Phys. Lett. 2019, 45, 24–26. [Google Scholar] [CrossRef]
- Bett, A.W.; Dimroth, F.; Lockenhoff, R.; Oliva, E.; Schubert, J. III–V solar cells under monochromatic illumination. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; p. 4922910. [Google Scholar]
- Fahrenbruch, A.L.; Lopez-Otero, A.; Werthen, J.G.; Wu, T.C. GaAs- and InAlGaAs-based concentrator-type cells for conversion of power transmitted by optical fibers. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference—1996, Washington, DC, USA, 13–17 May 1996; pp. 117–120. [Google Scholar]
- Fave, A.; Kaminski, A.; Gavand, M.; Mayet, L.; Laugier, A. GaAs converter for high power laser diode. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference—1996, Washington, DC, USA, 13–17 May 1996; pp. 101–104. [Google Scholar]
- Green, M.; Zhao, J.; Wang, A.; Wenham, S. 45% efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett. 1992, 13, 317–318. [Google Scholar] [CrossRef]
- Höhn, O.; Walker, A.W.; Bett, A.W.; Helmers, H. Optimal laser wavelength for efficient laser power converter operation over temperature. Appl. Phys. Lett. 2016, 108, 241104. [Google Scholar] [CrossRef]
- Shan, T.; Qi, X. Design and optimization of GaAs photovoltaic converter for laser power beaming. Infrared Phys. Technol. 2015, 71, 144–150. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Potapovich, N.S.; Khvostikova, O.A.; Timoshina, N.K.; Shvarts, M.Z. Modification of Photovoltaic Laser-Power (λ = 808 nm) Converters Grown by LPE. Semiconductors 2018, 52, 366–370. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Potapovich, N.S.; Khvostikova, O.A.; Timoshina, N.K. Laser (λ = 809 nm) power converter based on GaAs. Semiconductors 2017, 51, 645. [Google Scholar] [CrossRef]
- Helmers, H.; Franke, A.; Lackner, D.; Höhn, O.; Predan, F.; Dimroth, F. 51% Efficient Photonic Power Converters for O-Band Wavelengths around 1310 nm. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 2471–2474, 9300717. [Google Scholar]
- Zhao, Y.; Liang, P.; Ren, H.; Han, P. Enhanced efficiency in 808 nm GaAs laser power converters via gradient doping. AIP Adv. 2019, 9, 105206. [Google Scholar] [CrossRef]
- York, M.C.A.; Fafard, S. High efficiency phototransducers based on a novel vertical epitaxial heterostructure architecture (VEHSA) with thin p/n junctions. J. Phys. D Appl. Phys. 2017, 50, 173003. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhao, Y.; Yu, S.; Li, K.; Dong, J.; Xue, J.; Xue, C.; Ye, Y. Characterizations of high-voltage vertically-stacked GaAs laser power converter. J. Semicond. 2018, 39, 094006. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Q.; Lu, Y.; Wang, J. TO-packaged, multi-junction GaAs laser power converter with output electric power over 1 W. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–3. [Google Scholar]
- Jarvis, S.D.; Mukherjee, J.; Perren, M.; Sweeney, S.J. Development and characterisation of laser power converters for optical power transfer applications. IET Optoelectron. 2014, 8, 64–70. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Khvostikova, O.A.; Potapovich, N.S.; Malevskaya, A.V.; Nakhimovich, M.V.; Shvarts, M.Z. GaSb photovoltaic cells for laser power conversion. AIP Conf. Proc. 2019, 2149, 050007. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.; Werthen, J.-G.; Liu, J.; Wu, T.-C.; Hundsberger, C.; Schwarzfischer, M.; Steinle, G.; Gaertner, C.; Piemonte, C.; et al. Power and Spectral Range Characteristics for Optical Power Converters. Energies 2021, 14, 4395. [Google Scholar] [CrossRef]
- Keller, G. GaAs multi-junction laser power converters at AZUR SPACE: Current status and development activities. Presented at the 1st Optical Wireless and Fiber Power Transmission Conference 2019, Yokohama, Japan, 23–25 April 2019; pp. 11–12. [Google Scholar]
- Wojtczuk, S.J. Long-wavelength laser power converters for optical fibers. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference—1997, Anaheim, CA, USA, 29 September–3 October 1997; pp. 971–974. [Google Scholar]
- Eggert, N.; Rusack, R.; Mans, J. Evaluation of photonic power converters. J. Instrum. 2010, 5, T02001. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. Perspective on photovoltaic optical power converters. J. Appl. Phys. 2021, 130, 160901. [Google Scholar] [CrossRef]
- Wang, A.-C.; Sun, Y.-R.; Yu, S.-Z.; Yin, J.-J.; Zhang, W.; Wang, J.-S.; Fu, Q.-X.; Han, Y.-H.; Qin, J.; Dong, J.-R. Characteristics of 1520 nm InGaAs multijunction laser power converters. Appl. Phys. Lett. 2021, 119, 243902. [Google Scholar] [CrossRef]
- Kurooka, K.; Honda, T.; Komazawa, Y.; Warigaya, R.; Uchida, S. A 46.7% efficient GaInP photonic power converter under high-power 638 nm laser uniform irradiation of 1.5 W cm−2. Appl. Phys. Express 2022, 15, 062003. [Google Scholar] [CrossRef]
- Helmers, H.; Hohn, O.; Tibbits, T.; Schauerte, M.; Amin, H.M.N.; Lackner, D. Unlocking 1550 nm laser power conversion by InGaAs single- and multiple-junction PV cells. In Proceedings of the PVSC 2022—IEEE 49th PVSC 2016—IEEE 43rd Photovoltaic Specialists Conference, Philadelphia, PA, USA, 5–10 June 2022. [Google Scholar]
- Fafard, S.; Masson, D.P. High-Efficiency and High-Power Multijunction InGaAs/InP Photovoltaic Laser Power Converters for 1470 nm. Photonics 2022, 9, 438. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. 74.7% Efficient GaAs-based laser power converters at 808 nm at 150 K. Photonics 2022, 9, 579. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Khvostikova, O.A.; Nakhimovich, M.V.; Shvarts, Z. Ge-Based Photovoltaic Laser-Power Converters. IEEE J. Photovolt. 2023, 13, 254–259. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Wang, J.; Zhang, Y.; Niu, R.; Chen, X.; Wang, B.; Xiao, Y.; Zhang, Z.; Liu, W.; et al. 1064 nm InGaAs metamorphic laser power converts with over 44% efficiency. Opt. Express 2022, 30, 42178–42185. [Google Scholar] [CrossRef]
- Yin, J.; Sun, Y.; Wang, A.; Yu, S.; Wang, J.; Fu, Q.; Qin, J.; Han, Y.; Zhang, W.; Zhang, S.; et al. High-Voltage 1064 nm InGaAsP Multijunction Laser Power Converters. IEEE Electron Device Lett. 2022, 43, 1291. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Wang, J.; Niu, R.; Chen, X.; Wang, B.; Xiao, Y.; Zhang, Z.; Liu, W.; Yang, H.; et al. High-performance laser power converts for direct-energy applications. Opt. Express 2022, 30, 31509–31517. [Google Scholar] [CrossRef]
- Beattie, M.N.; Helmers, H.; Forcade, G.P.; Valdivia, C.E.; Höhn, O.; Hinzer, K. InP-and GaAs-Based Photonic Power Converters under O-Band Laser Illumination: Performance Analysis and Comparison. IEEE J. Photovolt. 2022, 13, 113–121. [Google Scholar] [CrossRef]
- Fafard, S.; York, M.C.A.; Proulx, F.; Wilkins, M.; Valdivia, C.E.; Bajcsy, M.; Ban, D.; Arès, R.; Aimez, V.; Hinzer, K.; et al. Ultra-efficient N-junction photovoltaic cells with VOC > 14 V at high optical input powers. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; p. 2374. [Google Scholar]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R.; Dong, J.-R. Origins of the short circuit current of a current mismatched multijunction photovoltaic cell considering subcell reverse breakdown. Opt. Express 2023, 31, 14482. [Google Scholar] [CrossRef]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R. Multiple tunnel diode peaks in I–V curves of a multijunction laser power converter. Appl. Phys. Lett. 2022, 121, 233901. [Google Scholar] [CrossRef]
- Hartenstein, M.B.; France, R.M.; Nemeth, W.; Theingi, S.; Page, M.; Agarwal, S.; Young, D.L.; Stradins, P. High-voltage monocrystalline Si photovoltaic minimodules based on poly-Si/SiO passivating contacts for high-power laser power conversion. Sol. Energy Mater. Sol. Cells 2023, 255, 112286. [Google Scholar] [CrossRef]
- Ghods, A.; Sandquist, D.; Tatah, K.; Dummer, M.; Xu, G.; Ambrosius, E.; Ren, J.; Johnson, K. Design, fabrication, and characterization of multi-junction micro-photovoltaic devices. In Proceedings of the Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XII, San Francisco, CA, USA, 10 March 2023; Volume 12416, p. 1241607. [Google Scholar]
- Chancerel, F.; Regreny, P.; Leclercq, J.L.; Volatier, M.; Jaouad, A.; Darnon, M.; Fafard, S.; Gendry, M.; Aimez, V. Comparison of various InGaAs-based solar cells for concentrated photovoltaics applications. AIP Conf. Proc. 2022, 2550, 020002. [Google Scholar]
- Wang, H.; Wang, J.; Yang, H.; Deng, G.; Yang, Q.; Niu, R.; Gou, Y. The Effect of Non-Uniform Irradiation on Laser Photovoltaics: Experiments and Simulations. Photonics 2022, 9, 493. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Panchak, A.N.; Khvostikova, O.A.; Pokrovskiy, P.V. Side-Input GaAs Laser Power Converters with Gradient AlGaAs Waveguide. IEEE Electron Device Lett. 2022, 43, 1717–1719. [Google Scholar] [CrossRef]
- Ding, G.; Zheng, Y.; Li, Q.; Zhang, G.; Guo, X.; Wang, H.; Xiao, X.; Feng, Y.; Bai, Y.; Shao, Y. Constructing microcavity for perovskite laser power converter: A theoretical study. Phys. Status Solidi (A) 2022, 219, 2200539. [Google Scholar] [CrossRef]
- Lozano, J.F.; Seoane, N.; Almonacid, F.; Fernández, E.F.; García-Loureiro, A. Laser Power Converter Architectures Based on 3C-SiC with Efficiencies > 80%. Sol. RRL 2022, 6, 2101077. [Google Scholar] [CrossRef]
- Fernández, E.F.; García-Loureiro, A.; Seoane, N.; Almonacid, F. Band-gap material selection for remote high-power laser transmission. Sol. Energy Mat. Sol. Cells 2022, 235, 111483. [Google Scholar] [CrossRef]
- France, R.M.; Buencuerpo, J.; Bradsby, M.; Geisz, J.F.; Sun, Y.; Dhingra, P.; Lee, M.L.; Steiner, M.A. Graded buffer Bragg reflectors with high reflectivity and transparency for metamorphic optoelectronics. J. Appl. Phys. 2021, 129, 173102. [Google Scholar] [CrossRef]
- Beattie, M.N.; Valdivia, C.E.; Wilkins, M.M.; Zamiri, M.; Kaller, K.L.C.; Tam, M.C.; Kim, H.S.; Krich, J.J.; Wasilewski, Z.R.; Hinzer, K. High current density tunnel diodes for multi-junction photovoltaic devices on InP substrates. Appl. Phys. Lett. 2021, 118, 062101. [Google Scholar] [CrossRef]
- Wagner, L.; Reichmuth, S.K.; Philipps, S.P.; Oliva, E.; Bett, A.W.; Helmers, H. Integrated series/parallel connection for photo-voltaic laser power converters with optimized current matching. Prog. Photovolt. Res. Appl. 2020, 29, 172. [Google Scholar] [CrossRef]
- Panchak, A.; Khvostikov, V.; Pokrovskiy, P. AlGaAs gradient waveguides for vertical p/n junction GaAs laser power converters. Opt. Laser Technol. 2021, 136, 106735. [Google Scholar] [CrossRef]
- Lin, M.; Sha, W.E.I.; Zhong, W.; Xu, D. Intrinsic losses in photovoltaic laser power converters. Appl. Phys. Lett. 2021, 118, 104103. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Ren, H.; Li, S.; Han, P. Energy band adjustment of 808 nm GaAs laser power converters via gradient doping. J. Semicond. 2021, 42, 032701. [Google Scholar] [CrossRef]
- Nouri, N.; Valdivia, C.E.; Beattie, M.N.; Zamiri, M.S.; Krich, J.J.; Hinzer, K. Ultrathin monochromatic photonic power converters with nanostructured back mirror for light trapping of 1310-nm laser illumination. In Proceedings of the Physics, Simulation, and Photonic Engineering of Photovoltaic Devices X, Online, 5 March 2021; Volume 11681, p. 116810X. [Google Scholar]
- Masson, D.; Proulx, F.; Fafard, S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog. Photovolt. Res. Appl. 2015, 23, 1687–1696. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. Transducer to Convert Optical Energy to Electrical Energy. U.S. Patent 9,673,343, 6 June 2017. [Google Scholar]
- Wulf, J.; Oliva, E.; Mikolasch, G.; Bartsch, J.; Dimroth, F.; Helmers, H. Thin film GaAs solar cell enabled by direct rear side plating and patterned epitaxial lift-off. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021. [Google Scholar]
- Helmers, H.; Lopez, E.; Hohn, O.; Lackner, D.; Schon, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. Pushing the Boundaries of Photovoltaic Light to Electricity Conversion: A GaAs Based Photonic Power Converter with 68.9% Efficiency. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 2286–2289. [Google Scholar]
- Schauerte, M.; Hohn, O.; Wierzkowski, T.; Keller, G.; Helmers, H. 4-Junction GaAs Based Thin Film Photonic Power Converter with Back Surface Reflector for Medical Applications. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1954–1959. [Google Scholar]
- France, R.M.; Hinojosa, M.; Ahrenkiel, S.P.; Young, M.R.; Johnston, S.W.; Guthrey, H.L.; Steiner, M.A.; Geisz, J.F. Improvement of front-junction GaInP by point-defect injection and annealing. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; p. 2522. [Google Scholar]
- Geisz, J.F.; Buencuerpo, J.; McMahon, W.E.; Klein, T.R.; Tamboli, A.C.; Warren, E.L. Fabrication, Measurement, and Modeling of GaInP/GaAs Three-Terminal Cells and Strings. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 0154–0157. [Google Scholar]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Kimovec, R.; Helmers, H.; Bett, A.W.; Topič, M. Comprehensive electrical loss analysis of monolithic interconnected multi-segment laser power converters. Prog. Photovolt. Res. Appl. 2019, 27, 199. [Google Scholar] [CrossRef]
- Kimovec, R.; Helmers, H.; Bett, A.W.; Topic, M. On the Influence of the Photo-Induced Leakage Current in Monolithically Interconnected Modules. IEEE J. Photovolt. 2018, 8, 541–546. [Google Scholar] [CrossRef]
- Cicic, S.; Tomic, S. Automated design of multi junction solar cells by genetic approach: Reaching the >50% efficiency target. Sol. Energy Mater. Sol. Cells 2018, 181, 30–37. [Google Scholar] [CrossRef]
- Čičić, S.; Tomić, S. Genetic algorithm designed high efficiency laser power converters based on the vertical epitaxial heterostructure architecture. Sol. Energy Mater. Sol. Cells 2019, 200, 109878. [Google Scholar] [CrossRef]
- CAlgora; García, I.; Delgado, M.; Peña, R.; Vázquez, C.; Hinojosa, M.; Rey-Stolle, I. Beaming power: Photovoltaic laser power converters for power-by-light. Joule 2022, 6, 340. [Google Scholar] [CrossRef]
- Kalyuzhnyy, N.A.; Emelyanov, V.M.; Evstropov, V.V.; Mintairov, S.A.; Mintairov, M.A.; Nahimovich, M.V.; Salii, R.A.; Shvarts, M.Z. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ = 1064 nm) power converters with over 50% efficiency. Sol. Energy Mater. Sol. Cells 2020, 217, 110710. [Google Scholar] [CrossRef]
- Proulx, F.; York, M.C.A.; Provost, P.O.; Arès, R.; Aimez, V.; Masson, D.P.; Fafard, S. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys. Status Solidi RRL 2017, 11, 1600385. [Google Scholar] [CrossRef]
- Wilkins, M.; Valdivia, C.E.; Gabr, A.M.; Masson, D.; Fafard, S.; Hinzer, K. Luminescent coupling in planar opto-electronic de-vices. J. Appl. Phys. 2015, 118, 143102. [Google Scholar] [CrossRef]
- Lopez, E.; Höhn, O.; Schauerte, M.; Lackner, D.; Schachtner, M.; Reichmuth, S.K.; Helmers, H. Experimental coupling process efficiency and benefits of back surface reflectors in photovoltaic multi-junction photonic power converters. Prog. Photovolt. Res. Appl. 2021, 29, 461. [Google Scholar] [CrossRef]
- Xia, D.; Krich, J.J. Efficiency increase in multijunction monochromatic photovoltaic devices due to luminescent coupling. J. Appl. Phys. 2020, 128, 013101. [Google Scholar] [CrossRef]
- Philipps, S.P.; Hoheisel, R.; Gandy, T.; Stetter, D.; Hermle, M.; Dimroth, F.; Bett, A.W. An experimental and theoretical study on the temperature dependence of GaAs solar cells. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 001610–001614. [Google Scholar]
- Putra, E.P.; Theivindran, R.; Hasnul, H.; Lee, H.J.; Ker, P.J.; Jamaludin, M.Z.; Awang, R.; Mohd Yusof, F.A. Technology up-date on patent and development trend of power over fiber: A critical review and future prospects. J. Photonics Energy 2023, 13, 011001. [Google Scholar] [CrossRef]
- Guo, C.; Guan, C.; Lv, H.; Chai, S.; Chen, H. Multi-Channel Long-Distance Audio Transmission System Using Power-over-Fiber Technology. Photonics 2023, 10, 521. [Google Scholar] [CrossRef]
- Martinek, P.; Prajzler, V. Power over fiber using a large core fiber and laser operating at 976 nm with 10 W power. Opt. Fiber Technol. 2023, 80, 103404. [Google Scholar] [CrossRef]
- Shindo, N.; Kobatake, T.; Masson, D.; Fafard, S.; Matsuura, M. Optically Powered and Controlled Drones Using Optical Fibers for Airborne Base Stations. Photonics 2022, 9, 882. [Google Scholar] [CrossRef]
- Matsuura, M.; Nomoto, H.; Mamiya, H.; Higuchi, T.; Masson, D.; Fafard, S. Over 40-W Electric Power and Optical Data Transmission Using an Optical Fiber. IEEE Trans. Power Electron. 2020, 36, 4532. [Google Scholar] [CrossRef]
- Helmers, H.; Armbruster, C.; von Ravenstein, M.; Derix, D.; Schoner, C. 6-W Optical Power Link with Integrated Optical Data Transmission. IEEE Trans. Power Electron. 2020, 35, 7904. [Google Scholar] [CrossRef]
- Jaffe, P.; Jenkins, P.; US NRL; Nugent, T.; PowerLight Tech. Inc. Practical Power Beaming Gets Real, IEEE Spectrum 21 May 2022. 2019. Available online: https://spectrum.ieee.org/power-beaming (accessed on 14 July 2023).
- Wilkins, M.M.; Ishigaki, M.; Provost, P.-O.; Masson, D.; Fafard, S.; Valdivia, C.E.; DeDe, E.M.; Hinzer, K. Ripple-Free Boost-Mode Power Supply Using Photonic Power Conversion. IEEE Trans. Power Electron. 2018, 34, 1054. [Google Scholar] [CrossRef]
- Sweeney, S.J. Optical wireless power at eye-safe wavelengths: Challenges and opportunities. In Proceedings of the 3rd Optical Wireless and Fiber Power Transmission Conference (OWPT2021), Yokohama, Japan, 19–22 April 2021. [Google Scholar]
- Wong, Y.L.; Shibui, S.; Koga, M.; Hayashi, S.; Uchida, S. Optical Wireless Power Transmission Using a GaInP Power Converter Cell under High-Power 635 nm Laser Irradiation of 53.5 W/cm2. Energies 2022, 15, 3690. [Google Scholar] [CrossRef]
- He, T.; Yang, S.-H.; Zhang, H.-Y.; Zhao, C.-M.; Zhang, Y.-C.; Xu, P.; Muñoz, M. High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter. Chin. Phys. Lett. 2014, 31, 104203. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Potapovich, N.S.; Sorokina, S.V.; Shvarts, M.Z. Module of Laser-Radiation (λ = 1064 nm) Photovoltaic Converters. Semiconductors 2019, 53, 1110–1113. [Google Scholar] [CrossRef]
- Guan, C.; Li, L.; Ji, H.; Luo, S.; Xu, P.; Gao, Q.; Lv, H.; Liu, W. Fabrication and Characterization of a High-Power Assembly with a 20-Junction Monolithically Stacked Laser Power Converter. IEEE J. Photovolt. 2018, 8, 1355–1362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fafard, S.; Masson, D. Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement. Photonics 2023, 10, 940. https://doi.org/10.3390/photonics10080940
Fafard S, Masson D. Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement. Photonics. 2023; 10(8):940. https://doi.org/10.3390/photonics10080940
Chicago/Turabian StyleFafard, Simon, and Denis Masson. 2023. "Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement" Photonics 10, no. 8: 940. https://doi.org/10.3390/photonics10080940
APA StyleFafard, S., & Masson, D. (2023). Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement. Photonics, 10(8), 940. https://doi.org/10.3390/photonics10080940