Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers
Abstract
:1. Introduction
2. Laser Model
3. Normalized Equations
4. Dynamics of the Ring of Three Unidirectionally Coupled EDFLs
4.1. Rotating Wave
4.2. Power Spectrum Analysis on the Route to Chaos
4.3. Coexistence of Attractors
4.4. Synchronization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Digonnet, M.J. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Luo, L.; Chu, P. Optical secure communications with chaotic erbium-doped fiber lasers. J. Opt. Soc. Am. B 1998, 15, 2524–2530. [Google Scholar] [CrossRef]
- Shay, T.; Duarte, F. Tunable Fiber Lasers. In Tunable Laser Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 179–196. [Google Scholar]
- Pisarchik, A.N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-López, J.H.; Kazantsev, V.B. Optical fiber synaptic sensor. Opt. Lasers Eng. 2011, 49, 736–742. [Google Scholar] [CrossRef]
- Mary, R.; Choudhury, D.; Kar, A.K. Applications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 72–84. [Google Scholar] [CrossRef]
- Zhao, L.; Li, D.; Li, L.; Wang, X.; Geng, Y.; Shen, D.; Su, L. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–9. [Google Scholar] [CrossRef]
- Zervas, M.N.; Codemard, C.A. High power fiber lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Castillo-Guzmán, A.; Anzueto-Sánchez, G.; Selvas-Aguilar, R.; Estudillo-Ayala, J.; Rojas-Laguna, R.; May-Arrioja, D.; Martínez-Ríos, A. Erbium-doped tunable fiber laser. In Proceedings of the Laser Beam Shaping IX, International Society for Optics and Photonics, San Diego, CA, USA, 11–12 August 2008; Volume 7062, p. 70620Y. [Google Scholar]
- Saucedo-Solorio, J.M.; Pisarchik, A.N.; Kir’yanov, A.V.; Aboites, V. Generalized multistability in a fiber laser with modulated losses. J. Opt. Soc. Am. B 2003, 20, 490–496. [Google Scholar] [CrossRef]
- Reategui, R.; Kir’yanov, A.V.; Pisarchik, A.N.; Barmenkov, Y.O.; Il’ychev, N.N. Experimental study and modeling of coexisting attractors and bifurcations in an erbium-doped fiber laser with diode-pump modulation. Laser Phys. 2004, 14, 1277–1281. [Google Scholar]
- Ke, J.; Yi, L.; Xia, G.; Hu, W. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett. 2018, 43, 1323–1326. [Google Scholar] [CrossRef]
- Keren, S.; Horowitz, M. Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses. Opt. Lett. 2001, 26, 328–330. [Google Scholar] [CrossRef]
- Lim, H.; Jiang, Y.; Wang, Y.; Huang, Y.C.; Chen, Z.; Wise, F.W. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm. Opt. Lett. 2005, 30, 1171–1173. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y.; Sun, J. Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing. Opt. Express 2014, 22, 8405–8419. [Google Scholar] [CrossRef]
- Droste, S.; Ycas, G.; Washburn, B.R.; Coddington, I.; Newbury, N.R. Optical frequency comb generation based on erbium fiber lasers. Nanophotonics 2016, 5, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Ahmed, M.A.; Michalowski, A.; Voss, A.; Weber, R.; Graf, T. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express 2010, 18, 22305–22313. [Google Scholar] [CrossRef]
- Philippov, V.; Codemard, C.; Jeong, Y.; Alegria, C.; Sahu, J.K.; Nilsson, J.; Pearson, G.N. High-energy in-fiber pulse amplification for coherent lidar applications. Opt. Lett. 2004, 29, 2590–2592. [Google Scholar] [CrossRef]
- Morin, F.; Druon, F.; Hanna, M.; Georges, P. Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications. Opt. Lett. 2009, 34, 1991–1993. [Google Scholar] [CrossRef]
- Sanchez, F.; Le Boudec, P.; François, P.L.; Stephan, G. Effects of ion pairs on the dynamics of erbium-doped fiber lasers. Phys. Rev. A 1993, 48, 2220. [Google Scholar] [CrossRef]
- Colin, S.; Contesse, E.; Le Boudec, P.; Stephan, G.; Sanchez, F. Evidence of a saturable-absorption effect in heavily erbium-doped fibers. Opt. Lett. 1996, 21, 1987–1989. [Google Scholar] [CrossRef]
- Rangel-Rojo, R.; Mohebi, M. Study of the onset of self-pulsing behaviour in an Er-doped fibre laser. Opt. Commun. 1997, 137, 98–102. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Barmenkov, Y.O.; Kir’yanov, A.V. Experimental characterization of the bifurcation structure in an erbium-doped fiber laser with pump modulation. IEEE J. Quantum Electron. 2003, 39, 1567–1571. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Kir’yanov, A.V.; Barmenkov, Y.O.; Jaimes-Reátegui, R. Dynamics of an erbium-doped fiber laser with pump modulation: Theory and experiment. J. Opt. Soc. Am. B 2005, 22, 2107–2114. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Barmenkov, Y.O. Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser. Opt. Commun. 2005, 254, 128–137. [Google Scholar] [CrossRef]
- Huerta-Cuellar, G.; Pisarchik, A.N.; Barmenkov, Y.O. Experimental characterization of hopping dynamics in a multistable fiber laser. Phys. Rev. E 2008, 78, 035202. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Huerta-Cuellar, G.; Taki, M. Rogue waves in a multistable system. Phys. Rev. Lett. 2011, 107, 274101. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Hramov, A.E. Multistability in Physical and Living Systems: Characterization and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Pisarchik, A.N.; Feudel, U. Control of multistability. Phys. Rep. 2014, 540, 167–218. [Google Scholar] [CrossRef]
- Huerta-Cuellar, G.; Pisarchik, A.N.; Kir’yanov, A.V.; Barmenkov, Y.O.; del Valle Hernández, J. Prebifurcation noise amplification in a fiber laser. Phys. Rev. E 2009, 79, 036204. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Reátegui, R.; Esqueda de la Torre, J.O.; García-López, J.H.; Huerta-Cuellar, G.; Aboites, V.; Pisarchik, A.N. Generation of giant periodic pulses in the array of erbium-doped fiber lasers by controlling multistability. Opt. Commun. 2020, 477, 126355. [Google Scholar] [CrossRef]
- Strogatz, S.H.; Stewart, I. Coupled oscillators and biological synchronization. Sci. Am. 1993, 269, 102–109. [Google Scholar] [CrossRef]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Kyprianidis, I.; Stouboulos, I. Chaotic synchronization of three coupled oscillators with ring connection. Chaos Solitons Fractals 2003, 17, 327–336. [Google Scholar] [CrossRef]
- Abrams, D.M.; Strogatz, S.H. Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurcat. Chaos 2006, 16, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Maneatis, J.G.; Horowitz, M.A. Precise delay generation using coupled oscillators. IEEE J. Solid-State Circ. 1993, 28, 1273–1282. [Google Scholar] [CrossRef] [Green Version]
- Ermentrout, G. The behavior of rings of coupled oscillators. J. Math. Biol. 1985, 23, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Keener, J.P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 1987, 47, 556–572. [Google Scholar] [CrossRef]
- Yamauchi, M.; Wada, M.; Nishio, Y.; Ushida, A. Wave propagation phenomena of phase states in oscillators coupled by inductors as a ladder. IEICE Trans. Fundam. Electron. Comput. Sci. 1999, 82, 2592–2598. [Google Scholar]
- Van der Sande, G.; Soriano, M.C.; Fischer, I.; Mirasso, C.R. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Phys. Rev. E 2008, 77, 055202. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.S.; Neu, J.C.; Rosales, R.R. Rotating spiral wave solutions of reaction-diffusion equations. SIAM J. Appl. Math. 1978, 35, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Noszticzius, Z.; Horsthemke, W.; McCormick, W.; Swinney, H.L.; Tam, W. Sustained chemical waves in an annular gel reactor: A chemical pinwheel. Nature 1987, 329, 619–620. [Google Scholar] [CrossRef]
- Alexander, J. Patterns at primary Hopf bifurcations of a plexus of identical oscillators. SIAM J. Appl. Math. 1986, 46, 199–221. [Google Scholar] [CrossRef]
- Nekorkin, V.I.; Makarov, V.A.; Velarde, M.G. Spatial disorder and waves in a ring chain of bistable oscillators. Int. J. Bifurcat. Chaos 1996, 6, 1845–1858. [Google Scholar] [CrossRef]
- Matias, M.; Pérez-Muñuzuri, V.; Lorenzo, M.; Marino, I.; Pérez-Villar, V. Observation of a fast rotating wave in rings of coupled chaotic oscillators. Phys. Rev. Lett. 1997, 78, 219. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Matías, M.A. Transition to chaotic rotating waves in arrays of coupled Lorenz oscillators. Int. J. Bifurcat. Chaos 1999, 9, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, Y. Metastable and chaotic transient rotating waves in a ring of unidirectionally coupled bistable Lorenz systems. Physica D 2013, 261, 8–18. [Google Scholar] [CrossRef]
- Perlikowski, P.; Yanchuk, S.; Wolfrum, M.; Stefanski, A.; Mosiolek, P.; Kapitaniak, T. Routes to complex dynamics in a ring of unidirectionally coupled systems. Chaos 2010, 20, 013111. [Google Scholar] [CrossRef] [Green Version]
- Jaimes-Reátegui, R. Dynamic of Complex System with Parametric Modulation: Duffing Oscillators. Doctoral Dissertation, Centro de Investigaciones en Optica Leon, Leon, Mexico, 2004; pp. 112–119. [Google Scholar]
- Sánchez, E.; Pazó, D.; Matías, M.A. Experimental study of the transitions between synchronous chaos and a periodic rotating wave. Chaos 2006, 16, 033122. [Google Scholar] [CrossRef] [Green Version]
- Barba-Franco, J.; Gallegos, A.; Jaimes-Reátegui, R.; Gerasimova, S.; Pisarchik, A.N. Dynamics of a ring of three unidirectionally coupled Duffing oscillators with time-dependent damping. Europhys. Lett. 2021, 134, 30005. [Google Scholar] [CrossRef]
- Bashkirtseva, I.A.; Ryashko, L.B.; Pisarchik, A.N. Ring of map-based neural oscillators: From order to chaos and back. Chaos Solitons Fractals 2020, 136, 109830. [Google Scholar] [CrossRef]
- Perlikowski, P.; Yanchuk, S.; Wolfrum, M.; Stefanski, A.; Kapitaniak, T. Dynamics of a large ring of unidirectionally coupled Duffing oscillators. In IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design: Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, Held Aberdeen, UK, 27–30 July 2010; Springer: Berlin/Heidelberg, Germany, 2013; pp. 63–72. [Google Scholar]
- Borkowski, L.; Stefanski, A. FFT bifurcation analysis of routes to chaos via quasiperiodic solutions. Math. Probl. Eng. 2015, 2015, 367036. [Google Scholar] [CrossRef] [Green Version]
- Borkowski, L.; Perlikowski, P.; Kapitaniak, T.; Stefanski, A. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators. Phys. Rev. E 2015, 91, 062906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buldú, J.M.; Torrent, M.C.; García-Ojalvo, J.O. Synchronization in semiconductor laser rings. J. Light. Technol. 2007, 25, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.C.; Wu, Z.M.; Cao, L.P.; Xia, G.Q. Chaos synchronization of optoelectronic coupled semiconductor lasers ring. Appl. Phys. B 2009, 97, 645–651. [Google Scholar] [CrossRef]
- Arroyo-Almanza, D.A.; Pisarchik, A.N.; Ruiz-Oliveras, F.R. Route to chaos in a ring of three unidirectionally coupled semiconductor lasers. IEEE Photon. Tech. Lett. 2012, 24, 605–607. [Google Scholar] [CrossRef]
- Arecchi, F.T.; Harrison, R.G. Instabilities and Chaos in Quantum Optics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 34. [Google Scholar]
- Landau, L.D. On the problem of turbulence. Dokl. Akad. Nauk USSR 1944, 44, 311. [Google Scholar]
- Hopf, E. A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1948, 1, 303–322. [Google Scholar] [CrossRef]
- Newhouse, S.; Ruelle, D.; Takens, F. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m≧3. Commun. Math. Phys. 1978, 64, 35–40. [Google Scholar] [CrossRef]
- Barba-Franco, J.; Romo-Muñoz, L.; Jaimes-Reátegui, R.; García-López, J.; Huerta-Cuellar, G.; Pisarchik, A.N. Electronic equivalent of a pump-modulated erbium-doped fiber laser. Integration 2023, 89, 106–113. [Google Scholar] [CrossRef]
- Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Boccaletti, S.; Pisarchik, A.N.; Del Genio, C.I.; Amann, A. Synchronization: From Coupled Systems to Complex Networks; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica D 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Matias, M.; Güémez, J.; Pérez-Munuzuri, V.; Marino, I.; Lorenzo, M.; Pérez-Villar, V. Size instabilities in rings of chaotic synchronized systems. Europhys. Lett. 1997, 37, 379. [Google Scholar] [CrossRef] [Green Version]
- Marino, I.; Pérez-Muñuzuri, V.; Pérez-Villar, V.; Sánchez, E.; Matıas, M. Interaction of chaotic rotating waves in coupled rings of chaotic cells. Physica D 1999, 128, 224–235. [Google Scholar] [CrossRef]
- Matías, M.; Güémez, J. Transient periodic rotating waves and fast propagation of synchronization in linear arrays of chaotic systems. Phys. Rev. Lett. 1998, 81, 4124. [Google Scholar] [CrossRef]
- Borkowski, L.; Stefanski, A. Stability of the 3-torus solution in a ring of coupled Duffing oscillators. Eur. Phys. J. Spec. Top. 2020, 229, 2249–2259. [Google Scholar] [CrossRef]
- Krysko, A.; Awrejcewicz, J.; Papkova, I.; Krysko, V. Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics. Chaos Solitons Fractals 2012, 45, 709–720. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Krysko, A.; Papkova, I.; Krysko, V. Routes to chaos in continuous mechanical systems. Part 3: The Lyapunov exponents, hyper, hyper-hyper and spatial–temporal chaos. Chaos Solitons Fractals 2012, 45, 721–736. [Google Scholar] [CrossRef]
- Barba-Franco, J.; Gallegos, A.; Jaimes-Reátegui, R.; Pisarchik, A.N. Dynamics of a ring of three fractional-order Duffing oscillators. Chaos Solitons Fractals 2022, 155, 111747. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Jaimes-Reategui, R. Control of basins of attraction in a multistable fiber laser. Phys. Lett. A 2009, 374, 228–234. [Google Scholar] [CrossRef]
- Meucci, R.; Marc Ginoux, J.; Mehrabbeik, M.; Jafari, S.; Clinton Sprott, J. Generalized multistability and its control in a laser. Chaos 2022, 32, 083111. [Google Scholar] [CrossRef]
- Pando, C.L.; Meucci, R.; Ciofini, M.; Arecchi, F.T. CO2 laser with modulated losses: Theoretical models and experiments in the chaotic regime. Chaos 1993, 3, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Doedel, E.J.; Pando, C.L. Multiparameter bifurcations and mixed-mode oscillations in Q-switched CO2 lasers. Phys. Rev. E 2014, 89, 052904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esqueda de la Torre, J.O.; García-López, J.H.; Jaimes-Reátegui, R.; Huerta-Cuellar, G.; Aboites, V.; Pisarchik, A.N. Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers. Photonics 2023, 10, 813. https://doi.org/10.3390/photonics10070813
Esqueda de la Torre JO, García-López JH, Jaimes-Reátegui R, Huerta-Cuellar G, Aboites V, Pisarchik AN. Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers. Photonics. 2023; 10(7):813. https://doi.org/10.3390/photonics10070813
Chicago/Turabian StyleEsqueda de la Torre, José Octavio, Juan Hugo García-López, Rider Jaimes-Reátegui, Guillermo Huerta-Cuellar, Vicente Aboites, and Alexander N. Pisarchik. 2023. "Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers" Photonics 10, no. 7: 813. https://doi.org/10.3390/photonics10070813
APA StyleEsqueda de la Torre, J. O., García-López, J. H., Jaimes-Reátegui, R., Huerta-Cuellar, G., Aboites, V., & Pisarchik, A. N. (2023). Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers. Photonics, 10(7), 813. https://doi.org/10.3390/photonics10070813