The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Gadolinium Oxide Nanoparticles
2.2. Experimental Setup
2.3. Registration of Hydrogen Peroxide and Hydroxyl Radicals
3. Results
3.1. Morphology of Gadolinium Oxide Nanoparticles
3.2. Analysis of Breakdown Plasma Flashes
3.3. Analysis of Acoustic Signals during Optical Breakdown
3.4. Formation of Molecular Oxygen and Molecular Hydrogen
3.5. Formation of Hydrogen Peroxide and Hydroxyl Radicals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hecht, J. A Short History of Laser Development. Appl. Opt. 2010, 49, F99–F122. [Google Scholar] [CrossRef]
- Wen, X.; Lin, Q.; Niu, G.; Shi, Q.; Duan, Y. Emission Enhancement of Laser-Induced Breakdown Spectroscopy for Aqueous Sample Analysis Based on Au Nanoparticles and Solid-Phase Substrate. Appl. Opt. 2016, 55, 6706–6712. [Google Scholar] [CrossRef]
- Al-Kattan, A.; Grojo, D.; Drouet, C.; Mouskeftaras, A.; Delaporte, P.; Casanova, A.; Robin, J.D.; Magdinier, F.; Alloncle, P.; Constantinescu, C. Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano-/Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges. Nanomaterials 2021, 11, 712. [Google Scholar] [CrossRef]
- Kalus, M.-R.R.; Reimer, V.; Barcikowski, S.; Gökce, B. Discrimination of Effects Leading to Gas Formation during Pulsed Laser Ablation in Liquids. Appl. Surf. Sci. 2019, 465, 1096–1102. [Google Scholar] [CrossRef]
- Smirnov, V.V.; Zhilnikova, M.I.; Barmina, E.V.; Shafeev, G.A.; Kobtsev, V.D.; Kostritsa, S.A.; Pridvorova, S.M. Laser Fragmentation of Aluminum Nanoparticles in Liquid Isopropanol. Chem. Phys. Lett. 2021, 763, 138211. [Google Scholar] [CrossRef]
- Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Stavertiy, A.Y.; Tretyakov, R.S.; Asyutin, R.D.; Pershin, S.M. Laser Welding Spot Diagnostics by Laser-Induced Breakdown Spectrometry. Phys. Wave Phenom. 2021, 29, 221–228. [Google Scholar] [CrossRef]
- Park, H.K.; Grigoropoulos, C.P.; Poon, C.C.; Tam, A.C. Optical Probing of the Temperature Transients during Pulsed-laser Induced Boiling of Liquids. Appl. Phys. Lett. 1996, 68, 596–598. [Google Scholar] [CrossRef]
- Li, M.; Shen, Z.; Gusev, V.; Lomonosov, A.M.; Ni, C. Nonlinear Phenomenon in Laser-Induced Finite-Amplitude Acoustic Waves Propagating along Cracks. J. Appl. Phys. 2021, 129, 124901. [Google Scholar] [CrossRef]
- Chemin, A.; Fawaz, M.W.; Amans, D. Investigation of the Blast Pressure Following Laser Ablation at a Solid–Fluid Interface Using Shock Waves Dynamics in Air and in Water. Appl. Surf. Sci. 2022, 574, 151592. [Google Scholar] [CrossRef]
- Aiyyzhy, K.O.; Barmina, E.V.; Voronov, V.V.; Shafeev, G.A.; Novikov, G.G.; Uvarov, O.V. Laser Ablation and Fragmentation of Boron in Liquids. Opt. Laser Technol. 2022, 155, 108393. [Google Scholar] [CrossRef]
- Frias Batista, L.M.; Nag, A.; Meader, V.K.; Tibbetts, K.M. Generation of Nanomaterials by Reactive Laser-Synthesis in Liquid. Sci. China Phys. Mech. Astron. 2022, 65, 274202. [Google Scholar] [CrossRef]
- Kalus, M.-R.R.; Lanyumba, R.; Lorenzo-Parodi, N.; Jochmann, M.A.; Kerpen, K.; Hagemann, U.; Schmidt, T.C.; Barcikowski, S.; Gökce, B. Determining the Role of Redox-Active Materials during Laser-Induced Water Decomposition. Phys. Chem. Chem. Phys. 2019, 21, 18636–18651. [Google Scholar] [CrossRef]
- Champion, C.; Boudrioua, O.; Cappello, C.D. Water Molecule Ionization by Charged Particles: A Short Review. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2008; Volume 101, p. 12010. [Google Scholar]
- Crowell, R.A.; Bartels, D.M. Multiphoton Ionization of Liquid Water with 3.0–5.0 EV Photons. J. Phys. Chem. 1996, 100, 17940–17949. [Google Scholar] [CrossRef]
- Toigawa, T.; Gohdo, M.; Norizawa, K.; Kondoh, T.; Kan, K.; Yang, J.; Yoshida, Y. Examination of the Formation Process of Pre-Solvated and Solvated Electron in n-Alcohol Using Femtosecond Pulse Radiolysis. Radiat. Phys. Chem. 2016, 123, 73–78. [Google Scholar] [CrossRef]
- Amendola, V.; Amans, D.; Ishikawa, Y.; Koshizaki, N.; Scirè, S.; Compagnini, G.; Reichenberger, S.; Barcikowski, S. Room-temperature Laser Synthesis in Liquid of Oxide, Metal-oxide Core-shells, and Doped Oxide Nanoparticles. Chem. Eur. J. 2020, 26, 9206–9242. [Google Scholar] [CrossRef] [PubMed]
- Serkov, A.A.; Kuzmin, P.G.; Rakov, I.I.; Shafeev, G.A. Influence of Laser-Induced Breakdown on the Fragmentation of Gold Nanoparticles in Water. Quantum Electron. 2016, 46, 713–718. [Google Scholar] [CrossRef]
- Maximova, K.; Aristov, A.; Sentis, M.; Kabashin, A.V. Size-Controllable Synthesis of Bare Gold Nanoparticles by Femtosecond Laser Fragmentation in Water. Nanotechnology 2015, 26, 65601. [Google Scholar] [CrossRef] [PubMed]
- Pandey, B.K.; Shahi, A.K.; Shah, J.; Kotnala, R.K.; Gopal, R. Optical and Magnetic Properties of Fe2O3 Nanoparticles Synthesized by Laser Ablation/Fragmentation Technique in Different Liquid Media. Appl. Surf. Sci. 2014, 289, 462–471. [Google Scholar] [CrossRef]
- Ali, M.; Remalli, N.; Yehya, F.; Chaudhary, A.K.; Srikanth, V.V.S.S. Picosecond Laser Induced Fragmentation of Coarse Cu2O Particles into Nanoparticles in Liquid Media. Appl. Surf. Sci. 2015, 357, 1601–1605. [Google Scholar] [CrossRef]
- Baimler, I.V.; Simakin, A.V.; Gudkov, S.V. Investigation of the Laser-Induced Breakdown Plasma, Acoustic Vibrations and Dissociation Processes of Water Molecules Caused by Laser Breakdown of Colloidal Solutions Containing Ni Nanoparticles. Plasma Sources Sci. Technol. 2021, 30, 125015. [Google Scholar] [CrossRef]
- Kang, K.; Rho, Y.; Park, H.K.; Hwang, D.J. Investigation of Elemental Composition Change by Laser Ablation of a Rare-Earth Containing Material. Phys. Status Solidi 2018, 215, 1700947. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Simakin, A.V. Laser-Induced Optical Breakdown of an Aqueous Colloidal Solution Containing Terbium Nanoparticles: The Effect of Oxidation of Nanoparticles. J. Phys. Chem. B 2022, 126, 5678–5688. [Google Scholar] [CrossRef]
- Baimler, I.V.; Lisitsyn, A.B.; Serov, D.A.; Astashev, M.E.; Gudkov, S.V. Analysis of Acoustic Signals during the Optical Breakdown of Aqueous Solutions of Fe Nanoparticles. Front. Phys. 2020, 8, 622791. [Google Scholar] [CrossRef]
- Baimler, I.V.; Lisitsyn, A.B.; Gudkov, S.V. Influence of Gases Dissolved in Water on the Process of Optical Breakdown of Aqueous Solutions of Cu Nanoparticles. Front. Phys. 2020, 8, 622775. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Lyakhov, G.A.; Pustovoy, V.I.; Shcherbakov, I.A. Influence of Mechanical Effects on the Hydrogen Peroxide Concentration in Aqueous Solutions. Phys. Wave Phenom. 2019, 27, 141–144. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Penkov, N.V.; Baimler, I.V.; Lyakhov, G.A.; Pustovoy, V.I.; Simakin, A.V.; Sarimov, R.M.; Scherbakov, I.A. Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. Int. J. Mol. Sci. 2020, 21, 8033. [Google Scholar] [CrossRef]
- Zvyagin, A.I.; Perepelitsa, A.S.; Lavlinskaya, M.S.; Ovchinnikov, O.V.; Smirnov, M.S.; Ganeev, R.A. Demonstration of Variation of the Nonlinear Optical Absorption of Non-Spherical Silver Nanoparticles. Optik 2018, 175, 93–98. [Google Scholar] [CrossRef]
- Richerzhagen, B.; Delacretaz, G.P.; Salathe, R.-P. Complete Model to Simulate the Thermal Defocusing of a Laser Beam Focused in Water. Opt. Eng. 1996, 35, 2058–2066. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Grinberg, M.A.; Sukhov, V.; Vodeneev, V. Effect of Ionizing Radiation on Physiological and Molecular Processes in Plants. J. Environ. Radioact. 2019, 202, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Fano, U. On the Theory of Ionization Yield of Radiations in Different Substances. Phys. Rev. 1946, 70, 44. [Google Scholar] [CrossRef]
- Bagratashvili, V.N.; Letokhov, V.S.; Makarov, A.A.; Ryabov, E.A. Multiple Photon IR Laser Photophysics and Photochemistry. V. Laser Chem. 1984, 5, 53–105. [Google Scholar] [CrossRef] [Green Version]
- Woodin, R.L.; Bomse, D.S.; Beauchamp, J.L. Multiphoton Dissociation of Molecules with Low Power Continuous Wave Infrared Laser Radiation. J. Am. Chem. Soc. 1978, 100, 3248–3250. [Google Scholar] [CrossRef]
- Grant, E.R.; Schulz, P.A.; Sudbo, A.S.; Shen, Y.R.; Lee, Y.-T. Is Multiphoton Dissociation of Molecules a Statistical Thermal Process? Phys. Rev. Lett. 1978, 40, 115. [Google Scholar] [CrossRef] [Green Version]
- Simakin, A.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Vedunova, M.V.; Sevost’Yanov, M.A.; Belosludtsev, K.N.; Gudkov, S.V.; Sevost’yanov, M.A.; et al. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J. Phys. Chem. B 2019, 123, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Lyakhov, G.A.; Pustovoy, V.I.; Shcherbakov, I.A. Vibration–Vortex Mechanism of Radical-Reaction Activation in an Aqueous Solution: Physical Analogies. Phys. Wave Phenom. 2021, 29, 108–113. [Google Scholar] [CrossRef]
- Rice, F.O.; Reiff, O.M. The Thermal Decomposition of Hydrogen Peroxide. J. Phys. Chem. 2002, 31, 1352–1356. [Google Scholar] [CrossRef]
- Kawasaki, M.; Masuda, K. Laser Fragmentation of Water-Suspended Gold Flakes via Spherical Submicroparticles to Fine Nanoparticles. J. Phys. Chem. B 2005, 109, 9379–9388. [Google Scholar] [CrossRef]
- Akimoto, I.; Maeda, K.; Ozaki, N. Hydrogen Generation by Laser Irradiation of Carbon Powder in Water. J. Phys. Chem. C 2013, 117, 18281–18285. [Google Scholar] [CrossRef]
- Kierzkowska-Pawlak, H.; Tyczkowski, J.; Jarota, A.; Abramczyk, H. Hydrogen Production in Liquid Water by Femtosecond Laser-Induced Plasma. Appl. Energy 2019, 247, 24–31. [Google Scholar] [CrossRef]
- Barmina, E.V.; Simakin, A.V.; Shafeev, G.A. Hydrogen Emission under Laser Exposure of Colloidal Solutions of Nanoparticles. Chem. Phys. Lett. 2016, 655, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Barmina, E.V.; Simakin, A.V.; Shafeev, G.A. Balance of O2 and H2 Content under Laser-Induced Breakdown of Aqueous Colloidal Solutions. Chem. Phys. Lett. 2017, 678, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Baimler, I.V.; Lisitsyn, A.B.; Gudkov, S.V. Water Decomposition Occurring during Laser Breakdown of Aqueous Solutions Containing Individual Gold, Zirconium, Molybdenum, Iron or Nickel Nanoparticles. Front. Phys. 2020, 8, 620938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simakin, A.V.; Baimler, I.V.; Baryshev, A.S.; Dikovskaya, A.O.; Gudkov, S.V. The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions. Photonics 2023, 10, 784. https://doi.org/10.3390/photonics10070784
Simakin AV, Baimler IV, Baryshev AS, Dikovskaya AO, Gudkov SV. The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions. Photonics. 2023; 10(7):784. https://doi.org/10.3390/photonics10070784
Chicago/Turabian StyleSimakin, Aleksander V., Ilya V. Baimler, Alexey S. Baryshev, Anastasiya O. Dikovskaya, and Sergey V. Gudkov. 2023. "The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions" Photonics 10, no. 7: 784. https://doi.org/10.3390/photonics10070784
APA StyleSimakin, A. V., Baimler, I. V., Baryshev, A. S., Dikovskaya, A. O., & Gudkov, S. V. (2023). The Influence of Gadolinium Oxide Nanoparticles Concentration on the Chemical and Physical Processes Intensity during Laser-Induced Breakdown of Aqueous Solutions. Photonics, 10(7), 784. https://doi.org/10.3390/photonics10070784