Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy
Abstract
:1. Introduction
2. Prospect of Terahertz Biomedical Spectroscopy
3. Device Structure and Fabrication
4. Simulation Method
5. Steady-State DC Characteristics
6. Large-Signal Characteristics
7. Noise Performance
8. Comparison with Other THz Sources
9. Background Prospective of Biomedical Application
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, P.H. THz Instruments for Space. IEEE Trans. Antennas Propag. 2007, 55, 2957–2965. [Google Scholar] [CrossRef]
- Grischkowsky, D.; Keiding, S.R.; Van Exter, M.; Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 1990, 7, 2006–2015. [Google Scholar] [CrossRef]
- Debus, C.; Bolivar, P.H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 2007, 91, 184102. [Google Scholar] [CrossRef]
- Yasui, T.; Yasuda, T.; Sawanaka, K.-I.; Araki, T. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl. Opt. 2005, 44, 6849–6856. [Google Scholar] [CrossRef] [Green Version]
- Stoik, C.D.; Bohn, M.J.; Blackshire, J.L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express 2008, 16, 17039–17051. [Google Scholar] [CrossRef]
- Jördens, C.; Koch, M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 2008, 47, 037003. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Cole, B.E.; Taday, P.F. Nondestructive Analysis of Tablet Coating Thicknesses Using Terahertz Pulsed Imaging. J. Pharm. Sci. 2005, 94, 177–183. [Google Scholar] [CrossRef]
- Siegel, P. Terahertz Technology in Biology and Medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar] [CrossRef]
- Ward, J.; Schlecht, E.; Chattopadhyay, G.; Maestrini, A.; Gill, J.; Maiwald, F.; Javadi, H.; Mehdi, I. Capability of THz Sources based on Schotiky diode frequency multiplier chains. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Fort Worth, TX, USA, 6–11 June 2004; pp. 1587–1590. [Google Scholar]
- Heyminck, S.; Güsten, R.; Graf, U.; Stutzki, J.; Hartogh, P.; Hübers, H.W.; Ricken, O.; Klein, B. GREAT: Ready for early science aboard SOFIA. In Proceedings of the 20th International Symposium on Space Terahertz Technology, Charlottesville, VA, USA, 20–22 April 2009; pp. 315–317. [Google Scholar]
- Crowe, T.W.; Hesler, J.L.; Retzloff, S.A.; Pouzou, C.; Schoenthal, G.S. Solid State LO Sources for Greater than 2 THz. In Proceedings of the 22nd International Symposium on Space Terahertz Technology, Tucson, AZ, USA, 25–28 April 2011. [Google Scholar]
- Crowe, T.W.; Hesler, J.L.; Retzloff, S.A.; Pouzou, C.; Hester, J.L. Multiplier based sources for frequencies above 2 THz. In Proceedings of the 36th International Conference on Infrared, Millimeter and Terahertz Sources (IRMMW-THz), Houston, TX, USA, 2–7 October 2011; pp. 1–4. [Google Scholar]
- Maestrini, A.; Mehdi, I.; Siles, J.V.; Ward, J.; Lin, R.; Thomas, B.; Lee, C.; Gill, J.; Chattopadhyay, G.; Schlecht, E.; et al. First Demonstration of a Tunable Electronic Source in the 2.5 to 2.7 THz Range. IEEE Trans. Terahertz Sci. Technol. 2012, 3, 1–10. [Google Scholar]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.; Mei, X.B.; Deal, W.R.; Yoshida, W.; Kim, Y.M.; Liu, P.H.; Lee, J.; Uyeda, J.; Radisic, V.; Lange, M.; et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 609–611. [Google Scholar]
- Deal, W.R.; Mei, X.B.; Radisic, V.; Leong, K.; Sarkozy, S.; Gorospe, B.; Lee, J.; Liu, P.H.; Yoshida, W.; Zhou, J.; et al. Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 289–291. [Google Scholar] [CrossRef]
- Urteaga, M.; Seo, M.; Hacker, J.; Griffith, Z.; Young, A.; Pierson, R.; Rowell, P.; Skalare, A.; Rodwell, M. InP HBT integrated circuit technology for terahertz frequencies. In Proceedings of the 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 3–6 October 2010; pp. 1–4. [Google Scholar]
- Lobisser, E.; Griffith, Z.; Jain, V.; Thibeault, B.; Rodwell, M.; Loubychev, D.; Snyder, A.; Wu, Y.; Fastenau, J.; Liu, A. 200-nm InGaAs/InP type-I DHBT employing a dual-sidewall emitter process demonstrating fmax >> 800 GHz and fT = 360 GHz. In Proceedings of the 2009 IEEE International Conference on Indium Phosphide & Related Materials, Newport Beach, CA, USA, 10–14 May 2009; pp. 16–19. [Google Scholar]
- Seo, M.; Urteaga, M.; Young, A.; Jain, V.; Griffith, Z.; Hacker, J.; Rowell, P.; Pierson, R.; Rodwell, M. >300 GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP HBT process. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 272–275. [Google Scholar]
- Hacker, J.; Seo, M.; Young, A.; Griffith, Z.; Urteaga, M.; Reed, T.; Rodwell, M. THz MMICs based on InP HBT technology. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, USA, 23–28 May 2010; pp. 1126–1129. [Google Scholar]
- Seo, M.; Urteaga, M.; Hacker, J.; Young, A.; Griffith, Z.; Jain, V.; Pierson, R.; Rowell, P.; Skalare, A.; Peralta, A.; et al. In P HBT IC technology for terahertz frequencies: Fundumental oscillators up to 0.57 THz. IEEE J. Solid-State Circuits 2011, 46, 2203–2214. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.A.; Ma, X.; Hao, Y. A new lattice-matched In0.17Al0.83N~ GaN based heterostructure IMPATT diode for terahertz application. Semicond. Sci. Technol. 2019, 34, 115011. [Google Scholar] [CrossRef]
- Acharyya, A.; Banerjee, J. Potentiality of IMPATT Devices as Terahertz Source: An Avalanche Response Time-based Approach to Determine the Upper Cut-off Frequency Limits. IETE J. Res. 2013, 59, 118. [Google Scholar] [CrossRef]
- Acharyya, A.; Banerjee, J.P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 2012, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Horita, M.; Takashima, S.; Tanaka, R.; Matsuyama, H.; Ueno, K.; Edo, M.; Takahashi, T.; Shimizu, M.; Suda, J. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations. Jpn. J. Appl. Phys. 2017, 56, 031001. [Google Scholar] [CrossRef]
- Liu, Y. Recent research on ohmic contacts on GaN-based materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 738, 012007. [Google Scholar] [CrossRef]
- Acharyya, A.; Biswas, A.; Kar, S.; Satoh, H.; Inokawa, H. Possibilities of Realizing an Integrated Power Module for Terahertz Wave Generation. In New Horizons in Millimeter-Wave, Infrared and Terahertz Technologies; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; Volume 953, pp. 21–40. [Google Scholar] [CrossRef]
- Banerjee, P.; Acharyya, A.; Biswas, A.; Inokawa, H.; Bhattacharjee, A.K. Edge Terminated GaN Reverse Double-Drift IMPATT Structure for Millimeter-Wave Generation. IETE J. Res. 2022. submitted. [Google Scholar]
- Zhang, X.-Y.; Yang, L.-A.; Yang, W.-L.; Li, Y.; Ma, X.-H.; Hao, Y. Improved performance of Ni/GaN Schottky barrier impact ionization avalanche transit time diode with n-type GaN deep level defects. Semicond. Sci. Technol. 2020, 36, 025001. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yang, L.-A.; Ma, Y.; Liu, Y.-C.; Yang, W.-L.; Ma, X.-H.; Hao, Y. Noise characteristics of Ni/GaN Schottky barrier IMPATT diode based on polar- and nonpolar-oriented wurtzite GaN for terahertz application. Superlattices Microstruct. 2020, 139, 106405. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.A.; Zhang, X.; Ma, X.; Hao, Y. GaN/Alx Ga1−x N/GaN heterostructure IMPATT diode for D-band applications. Appl. Phys. A Solids Surf. 2019, 125, 205–215. [Google Scholar] [CrossRef]
- Farahmand, M.; Garetto, C.; Bellotti, E.; Brennan, K.; Goano, M.; Ghillino, E.; Ghione, G.; Albrecht, J.; Ruden, P. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries. IEEE Trans. Electron Devices 2001, 48, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.-H.; Brennan, K.F. Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures. J. Appl. Phys. 2002, 91, 3730–3736. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yang, L.-A.; Hu, X.-L.; Yang, W.-L.; Liu, Y.-C.; Li, Y.; Ma, X.-H.; Hao, Y. Simulation Study of Lateral Schottky Barrier IMPATT Diode Based on AlGaN/GaN 2-DEG for Terahertz Applications. IEEE Trans. Electron Devices 2022, 69, 1006–1013. [Google Scholar] [CrossRef]
- Martyniuk, P.; Antoszewski, J.; Faraone, L.; Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 2014, 1, 041102. [Google Scholar] [CrossRef] [Green Version]
- Woodward, R.M.; E Cole, B.; Wallace, V.P.; Pye, R.J.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 2002, 47, 3853–3863. [Google Scholar] [CrossRef]
- Nagel, M.; Bolivar, P.H.; Brucherseifer, M.; Kurz, H.; Bosserhoff, A.; Büttner, R. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 2002, 80, 154–156. [Google Scholar] [CrossRef]
- Karpowicz, N.; Zhong, H.; Zhang, C.; Lin, K.-I.; Hwang, J.-S.; Xu, J.; Zhang, X.-C. Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 2005, 86, 054105. [Google Scholar] [CrossRef] [Green Version]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Senica, U.; Forrer, A.; Olariu, T.; Micheletti, P.; Cibella, S.; Torrioli, G.; Beck, M.; Faist, J.; Scalari, G. Planarized THz quantum cascade lasers for broadband coherent photonics. Light Sci. App. 2022, 11, 347. [Google Scholar] [CrossRef]
- Watts, C.M.; Shrekenhamer, D.; Montoya, J.; Lipworth, G.; Hunt, J.; Sleasman, T.; Krishna, S.; Smith, D.R.; Padilla, W.J. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 2014, 8, 605–609. [Google Scholar] [CrossRef]
- Yang, X.; Vorobiev, A.; Generalov, A.; Andersson, M.A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102. [Google Scholar] [CrossRef] [Green Version]
- But, D.B.; Drexler, C.; Sakhno, M.; Dyakonova, N.; Drachenko, O.; Sizov, F.F.; Gutin, A.; Ganichev, S.D.; Knap, W. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities. J. Appl. Phys. 2014, 115, 164514. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Leng, T.; Zhu, M.; Zhang, X.; Chen, J.; Chang, K.; Aqeeli, M.; Geim, A.K.; Novoselov, K.S.; Hu, Z. Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications. Sci. Rep. 2015, 5, 18298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezimati, M.; Singh, G. Terahertz Imaging and Sensing for Healthcare: Current Status and Future Perspectives. IEEE Access 2023, 11, 18590–18619. [Google Scholar] [CrossRef]
- Markelz, A.G.; Mittleman, D.M. Perspective on Terahertz Applications in Bioscience and Biotechnology. ACS Photonics 2022, 9, 1117–1126. [Google Scholar]
- Shirkavand, A.; Tuchin, V.V.; Jahangiri, F.; Mohajerani, E. A review on terahertz non-destructive applications for wound and diabetic foot screening. Opt. Quantum Electron. 2022, 54, 467. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Chen, Z.; Luo, J.; Yang, S.; Yang, X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023, 259, 124483. [Google Scholar] [CrossRef]
- Gezimati, M.; Singh, G. Advances in terahertz technology for cancer detection applications. Opt. Quantum Electron. 2022, 55, 151. [Google Scholar] [CrossRef]
- Sadeghi, A.; Naghavi, S.M.H.; Mozafari, M.; Afshari, E. Nanoscale biomaterials for terahertz imaging: A non-invasive approach for early cancer detection. Transl. Oncol. 2023, 27, 101565. [Google Scholar] [CrossRef]
- Shi, W.; Li, C.; Wang, H.; Wang, Z.; Yang, L. Quantitative detection of THz-ATR spectra of aqueous samples under strong-field terahertz wave. iScience 2023, 26, 105871. [Google Scholar] [CrossRef]
- Fardelli, E.; D’arco, A.; Lupi, S.; Billi, D.; Moeller, R.; Guidi, M.C. Spectroscopic evidence of the radioresistance of Chroococcidiopsis biosignatures: A combined Raman, FT-IR and THz-TDs spectroscopy study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122148. [Google Scholar] [CrossRef]
- Ding, X.; Costa, G.; Hernandez-Serrano, A.I.; Stantchev, R.I.; Nurumbetov, G.; Haddleton, D.M.; Pickwell-MacPherson, E. Quantitative evaluation of transdermal drug delivery patches on human skin with in vivo THz-TDS. Biomed. Opt. Express 2023, 14, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, X.; Tao, R.; Zhang, T.; Liu, X.; Wang, J.; Wan, H.; Zheng, S.; Zhao, X.; Zhang, Z.; et al. Prediction of IDH mutation status of glioma based on terahertz spectral data. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 295, 122629. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tao, R.; Zhang, T.; Liu, X.; Wang, J.; Zhang, Z.; Zhao, X.; Yang, P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121933. [Google Scholar] [CrossRef] [PubMed]
- Chernomyrdin, N.V.; Musina, G.R.; Nikitin, P.V.; Dolganova, I.N.; Kucheryavenko, A.S.; Alekseeva, A.I.; Wang, Y.; Xu, D.; Shi, Q.; Tuchin, V.V.; et al. Terahertz technology in intraoperative neurodiagnostics: A review. Opto-Electronic Adv. 2023, 6, 220071. [Google Scholar] [CrossRef]
- Chen, X.; Lindley-Hatcher, H.; Stantchev, R.I.; Wang, J.; Li, K.; Serrano, A.H.; Taylor, Z.D.; Castro-Camus, E.; Pickwell-MacPherson, E. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chem. Phys. Rev. 2022, 3, 011311. [Google Scholar] [CrossRef]
- Jain, P.; Chhabra, H.; Chauhan, U.; Prakash, K.; Gupta, A.; Soliman, M.S.; Islam, S.; Islam, M.T. Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci. Rep. 2023, 13, 1792. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.-S. Terahertz metamaterial using reconfigurable H-shaped resonator with tunable perfect absorption characteristic. Mater. Today Commun. 2023, 35, 105700. [Google Scholar] [CrossRef]
- Yang, S.; Ding, L.; Wang, S.; Du, C.; Feng, L.; Qiu, H.; Zhang, C.; Wu, J.; Fan, K.; Jin, B.; et al. Studying Oral Tissue via Real-Time High-Resolution Terahertz Spectroscopic Imaging. Phys. Rev. Appl. 2023, 19, 034033. [Google Scholar] [CrossRef]
- Pongrac, B.; Sarjaš, A.; Gleich, D. Frequency Range Optimization for Continuous Wave Terahertz Imaging. Appl. Sci. 2023, 13, 974. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Feng, J.; Zou, Z.; Jiang, F.; Liu, H.; Jie, Y. Identification of blurred terahertz images by improved cross-layer convolutional neural network. Opt. Express 2023, 31, 16035–16053. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, G.; Ge, H.; Wang, F.; Li, L.; Chen, X.; Lu, M.; Zhang, Y. Machine Learning and Application in Terahertz Technology: A Review on Achievements and Future Challenges. IEEE Access 2022, 10, 53761–53776. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Sierakowski, A.J.; Schaff, W.J.; Eastman, L.F.; et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Banerjee, S.; Acharyya, A.; Mitra, M.; Banerjee, J.P. A Four-step Iterative Design Optimization Technique for DLHL IMPATTs. IETE J. Res. 2014, 60, 303–308. [Google Scholar] [CrossRef]
- Ghosh, M.; Ghosh, S.; Bandyopadhyay, P.K.; Biswas, A.; Bhattacharjee, A.K.; Acharyya, A. Noise Performance of 94 GHz Multiple Quantum Well Double-Drift Region IMPATT Sources. J. Act. Passiv. Electron. Devices 2018, 13, 195–207. [Google Scholar]
- Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V.; Schaff, B.; et al. Pyroelectric properties of Al(In)GaN/GaN hetero and quantum well structures. J. Phys.-Condens. Matter 2002, 14, 3399–3434. [Google Scholar]
- Yu, E.T.; Sullivan, G.J.; Asbeck, P.M.; Wang, C.D.; Qiao, D.; Lau, S.S. Measurement of piezo-electrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett. 1998, 71, 2794–2796. [Google Scholar] [CrossRef] [Green Version]
- Acharyya, A.; Banerjee, S.; Banerjee, J.P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 2013, 34, 024001. [Google Scholar] [CrossRef]
- Acharyya, A.; Banerjee, S.; Banerjee, J.P. A Proposed Simulation Technique to Study the Series Resistance and Related Millimeter-Wave Properties of Ka-Band Si IMPATTs from the Electric Field Snap-Shots. Int. J. Microw. Wirel. Technol. 2013, 5, 91–100. [Google Scholar] [CrossRef]
- Acharyya, A.; Banerjee, S.; Banerjee, J.P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J. Comput. Electron. 2013, 12, 511–525. [Google Scholar] [CrossRef]
- Banerjee, S.; Acharyya, A.; Banerjee, J.P. Noise Performance of Heterojunction DDR MITATT Devices Based on Si~Si1-xGex at W-Band. Act. Passiv. Electron. Compon. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Biswas, A.; Bhattacharjee, A.K.; Acharyya, A. Influence of Carrier–Carrier Interactions on the Noise Performance of Millimeter-Wave IMPATTs. IETE J. Res. 2018, 65, 515–522. [Google Scholar] [CrossRef]
- Kawasaki, S.; Ando, Y.; Deki, M.; Watanabe, H.; Tanaka, A.; Nitta, S.; Honda, Y.; Arai, M.; Amano, H. Experimental demonstration of GaN IMPATT diode at X-band. Appl. Phys. Express 2021, 14, 046501. [Google Scholar] [CrossRef]
- Chakraborty, D.; Maity, B.; Mukherjee, M. Design and development of an AlGaN/GaN heterostructure nano-ATT oscillator: Experimental feasibility studies in THz domain. Micro Nano Lett. 2020, 15, 41–46. [Google Scholar] [CrossRef]
- Sridharan, M.; Roy, S.K. Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron Lett. 1978, 14, 635–637. [Google Scholar] [CrossRef]
- Sridharan, M.; Roy, S.K. Effect of mobile space charge on the small signal admittance of silicon DDR. Solid State Electron. 1980, 23, 1001–1003. [Google Scholar] [CrossRef]
- Fan, Z.; Mohammad, S.N.; Kim, W.; Aktas, O.; Botchkarev, A.E.; Morkoc, H. Very low resistance multilayer Ohmic contact to n-GaN. Appl. Phys. Lett. 1996, 68, 1672–1674. [Google Scholar] [CrossRef] [Green Version]
- Guidee, P.; Teyssier, L. A 850–1000 GHz backward-wave oscillator for advanced applications. In Instrumentation for Submillimeter Spectroscopy; Kollberg, E., Ed.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 1986; Volume 598, pp. 93–98. [Google Scholar]
- Tucek, J.; Gallagher, D.; Kreischer, K.; Mihailovich, R. A compact, high power, 0.65 THz source. In Proceedings of the IEEE International Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 22–24 April 2008; pp. 16–17. [Google Scholar]
- Mineo, M.; Paoloni, C. Comparioson of THz backward wave oscillators based on corrugated waveguides. Prog. Electromagn. Res. Lett. 2012, 30, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Garcin, P. New technologies used for the 1 THz backward wave oscillator. In Proceedings of the International Electron Devices Meeting Technical Digest, San Francisco, CA, USA, 11–14 December 1988; pp. 850–853. [Google Scholar]
- Insight Products Co., Ltd. Sub-mm Sources from 178 to 1250 GHz Based on BWO (Backward Wave Oscillators). Available online: https://insight-product.com/submmbwo3.htm (accessed on 16 February 2023).
- Fujita, K.; Hayashi, S.; Ito, A.; Dougakiuchi, T.; Hitaka, M.; Nakanishi, A. Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range. Photon. Res. 2022, 10, 703. [Google Scholar] [CrossRef]
- Hayashi, S.; Ito, A.; Hitaka, M.; Fujita, K. Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade laser. Appl. Phys. Express 2020, 13, 112001. [Google Scholar] [CrossRef]
- Fujita, K.; Hayashi, S.; Ito, A.; Hitaka, M.; Dougakiuchi, T. Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics 2019, 8, 2235–2241. [Google Scholar] [CrossRef]
- El Fatimy, A.; Suemitsu, T.; Otsuji, T.; Dyakonova, N.; Knap, W.; Meziani, Y.M.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, C.; et al. Tunable room temperature terahertz sources based on two dimensional plasma instability in GaN HEMTs. J. Phys. Conf. Ser. 2009, 193, 012072. [Google Scholar] [CrossRef]
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz Diode Technology: Status, Prospects, and Applications. Proc. IEEE 2017, 105, 990–1007. [Google Scholar] [CrossRef]
- Hu, Z.; Kaynak, M.; Han, R. High-Power Radiation at 1 THz in Silicon: A Fully Scalable Array Using a Multi-Functional Radiating Mesh Structure. IEEE J. Solid-State Circuits 2018, 53, 1313–1327. [Google Scholar] [CrossRef]
- Banerjee, A.; Vajandar, S.; Basu, T. Prospects in Medical Applications of Terahertz Waves. In Terahertz Biomedical and Healthcare Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–239. [Google Scholar]
- Banerjee, A.; Chakraborty, C.; Rathi, M., Sr. Medical Imaging, Artificial Intelligence, Internet of Things, Wearable Devices in Terahertz Healthcare Technologies. Terahertz Biomed. Healthc. Technol. 2020, 145–165. [Google Scholar]
- Basu, T.; Banerjee, A.; Vajandar, S. 2D Materials as THz Generators, Detectors, and Modulators: Potential Candidates for Biomedical Applications. In Terahertz Biomedical and Healthcare Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–87. [Google Scholar] [CrossRef]
- Karthikeyan, M.P.; Samanta, D.; Banerjee, A.; Roy, A.; Inokawa, H. Design and Development of Terahertz Medical Screening Devices. In Trends in Wireless Communication and Information Security; Lecture Notes in Electrical Engineering; Chakraborty, M., Jha, R.K., Balas, V.E., Sur, S.N., Kandar, D., Eds.; Springer: Singapore, 2021; Volume 740. [Google Scholar] [CrossRef]
- Samanta, D.; Karthikeyan, M.P.; Agarwal, D.; Biswas, A.; Acharyya, A.; Banerjee, A. Trends in Terahertz Biomedical Applications. In Generation, Detection and Processing of Terahertz Signals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 285–299. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Tiwari, A.; Apriono, C.; Rahardjo, E.T.; Hiromoto, N.; Inokawa, H. Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer. Jpn. J. Appl. Phys. 2017, 56, 04CC07. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Elamaran, D.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer. Jpn. J. Appl. Phys. 2018, 57, 04FC09. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications. Sens. Actuators A Phys. 2018, 273, 49–57. [Google Scholar] [CrossRef]
- Banerjee, A.; Satoh, H.; Elamaran, D.; Sharma, Y.; Hiromoto, N.; Inokawa, H. Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor. J. Appl. Phys. 2019, 125, 214502. [Google Scholar] [CrossRef]
- Samanta, D.; Karthikeyan, M.; Banerjee, A.; Inokawa, H. Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging. Nanomedicine 2021, 16, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
Parameters | Flat HEM-ATT | hi-lo HEM-ATT | lo-hi HEM-ATT | lo-hi-lo HEM-ATT |
---|---|---|---|---|
Ld (nm) | 200 | 200 | 200 | 200 |
Ln+ (nm) | 100 | 100 | 100 | 100 |
ha (nm) | 20 | 20 | 20 | 20 |
hg (nm) | 20 | 20 | 20 | 20 |
LNi(Sch) (nm) | 20 | 20 | 20 | 20 |
LAu(Sch) (nm) | 100 | 100 | 100 | 100 |
LTi(Oh) (nm) | 30 | 30 | 30 | 30 |
LAu(Oh) (nm) | 150 | 150 | 150 | 150 |
Dr1 (nm) | - | 10 | - | 10 |
Lr1 (nm) | - | 50 | - | 50 |
Dr2 (nm) | - | - | 10 | 10 |
Lr2 (nm) | - | - | 50 | 50 |
Wd (μm) | 50 | 50 | 50 | 50 |
Sl. No. | Type of the Source | Important Specifications | Operational Frequency Range (THz) | THz Power Output (W) | DC to THz Conversion Efficiency (%) | Citation |
---|---|---|---|---|---|---|
1 | Schottky barrier lateral HEM-ATT source | Based on AlGaN/GaN two-dimensional electron gas | 0.923–1.066 | 0.25–0.30 | 11–25 | Present work |
2 | Carcinotron | - | 0.85 | 2 × 10−3 | - | [80] |
3 | Folded waveguide source | - | 0.65 | 59 × 10−3 | - | [81] |
4 | Backward wave oscillator | Narrow corrugated waveguide as slow wave structure | 0.85–1.03 | 0.20 | - | [82] |
5 | Backward wave oscillator | Vane circuit using 20 mA of current at 7.1 KV, made by milling | 0.80–0.96 | 2.0 × 10−3 | <1.0 | [83] |
6 | Backward wave oscillator | 6 KV, 60 A, 15 kg BWO, water-cooled | 1.03–1.25 | 0.5 × 10−3–2.0 × 10−3 | <1.0 | [84] |
7 | Backward wave oscillator | Frequency-multiplied BWOs | 1.10–1.50 | 1.0 × 10−6 | <1.0 | [82] |
8 | Backward wave oscillator | 10 MHz linewidth, semioptical-BWO hybrid devices, 6 KV cathodes, CW devices | 1.20–1.40 | 0.2 × 10−3 | <1.0 | [82] |
9 | Quantum cascade laser (QCL) | Monolithic THz source comprises 13.7 QCL coupled with a high-resistivity Si lens | 0.60–6.00 | 0.2 × 10−3 | - | [85] |
10 | Quantum cascade laser (QCL) | Electrically pumped monolithic source based on long-wavelength dual-upper-state active region | 1.03 | 1.8 × 10−5 | - | [86] |
11 | Quantum cascade laser (QCL) | Electrically pumped monolithic semiconductor source with intra-cavity non-linear frequency mixing | 1.2–5.9 | 2.87 × 10−3 at 1.5 THz (110 K temperature) | <1.0 | [87] |
12 | High-electron-mobility transistor (HEMT) | Tunable room temperature source utilizes the two-dimensional plasma insability in GaN HEMTs | 0.75–2.2 | 0.15 × 10−6 | <1.0 | [88] |
13 | Planner Schottky diode multipliers | - | 1.75–2.0 | 0.40 × 10−4 | <1.0 | [89] |
14 | Harmonic oscillator array | Si-based fully scalable coherent harmonic oscillator array | 1.01 | 0.81 × 10−4 | 0.73 × 10−4 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Acharyya, A.; Inokawa, H.; Satoh, H.; Biswas, A.; Dhar, R.S.; Banerjee, A.; Seteikin, A.Y. Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy. Photonics 2023, 10, 800. https://doi.org/10.3390/photonics10070800
Khan S, Acharyya A, Inokawa H, Satoh H, Biswas A, Dhar RS, Banerjee A, Seteikin AY. Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy. Photonics. 2023; 10(7):800. https://doi.org/10.3390/photonics10070800
Chicago/Turabian StyleKhan, Sahanowaj, Aritra Acharyya, Hiroshi Inokawa, Hiroaki Satoh, Arindam Biswas, Rudra Sankar Dhar, Amit Banerjee, and Alexey Y. Seteikin. 2023. "Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy" Photonics 10, no. 7: 800. https://doi.org/10.3390/photonics10070800
APA StyleKhan, S., Acharyya, A., Inokawa, H., Satoh, H., Biswas, A., Dhar, R. S., Banerjee, A., & Seteikin, A. Y. (2023). Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy. Photonics, 10(7), 800. https://doi.org/10.3390/photonics10070800