Phase Regeneration of QPSK Signals Based on Kerr Soliton Combs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wabnitz, S.; Eggleton, B.J. All-Optical Signal Processing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Willner, E.; Khaleghi, S.; Chitgarha, M.R.; Yilmaz, O.F. All-optical signal processing. J. Light. Technol. 2014, 32, 660. [Google Scholar] [CrossRef]
- Tong, Z.; Lundström, C.; Andrekson, P.A.; McKinstrie, C.J.; Karlsson, M.; Blessing, D.J.; Tipsuwannakul, E.; Puttnam, B.J.; Toda, H.; Grüner-Nielsen, L. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nat. Photonics 2011, 5, 430–436. [Google Scholar] [CrossRef]
- Slavík, R.; Parmigiani, F.; Kakande, J.; Lundström, C.; Sjödin, M.; Andrekson, P.A.; Weerasuriya, R.; Sygletos, S.; Ellis, A.D.; Grüner-Nielsen, L.; et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat. Photonics 2010, 4, 690–695. [Google Scholar] [CrossRef]
- Umeki, T.; Asobe, M.; Takenouchi, H. In-line phase sensitive amplifier based on PPLN waveguides. Opt. Express 2013, 21, 12077–12084. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Parmigiani, F.; Liu, S.; Kakande, J.; Petropoulos, P.; Gallo, K.; Richardson, D. Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. Opt. Express 2009, 17, 20393–20400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakande, J.; Slavík, R.; Parmigiani, F.; Bogris, A.; Syvridis, D.; Grüner-Nielsen, L.; Phelan, R.; Petropoulos, P.; Richardson, D.J. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nat. Photonics 2011, 5, 748–752. [Google Scholar] [CrossRef]
- Andrekson, P.A. Progress in phase-sensitive fiber-optic parametric amplifiers and their applications. In CLEO: Science and Innovations; Optica Publishing Group: Washington, DC, USA, 2011; p. CWD1. [Google Scholar]
- Liebig, E.; Sackey, I.; Richter, T.; Gajda, A.; Peczek, A.; Zimmermann, L.; Petermann, K.; Schubert, C. Performance evaluation of a silicon waveguide for phase regeneration of a QPSK signal. J. Light. Technol. 2017, 35, 1149–1156. [Google Scholar] [CrossRef]
- Hammani, K.; Ettabib, M.A.; Bogris, A.; Kapsalis, A.; Syvridis, D.; Brun, M.; Labeye, P.; Nicoletti, S.; Richardson, D.; Petropoulos, P. Optical properties of silicon germanium waveguides at telecommunication wavelengths. Opt. Express 2013, 21, 16690–16701. [Google Scholar] [CrossRef] [PubMed]
- Lacava, M.; Ettabib, A.; Petropoulos, P. Nonlinear silicon photonic signal processing devices for future optical networks. Appl. Sci. 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Bottrill, K.R.; Hesketh, G.; Jones, L.; Parmigiani, F.; Richardson, D.J.; Petropoulos, P. Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation. Opt. Express 2017, 25, 696–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grüner-Nielsen, L.; Herstrøm, S.; Dasgupta, S.; Richardson, D.; Jakobsen, D.; Lundström, C.; Andrekson, P.A.; Pedersen, M.E.V.; Pálsdóttir, B. Silica-based highly nonlinear fibers with a high SBS threshold. In Proceedings of the IEEE Photonics Society Winter Topical Meeting, Keystone, CO, USA, 10–12 January 2011. [Google Scholar]
- Stern, L.; Stone, J.R.; Kang, S.; Cole, D.C.; Suh, M.-G.; Fredrick, C.; Newman, Z.; Vahala, K.; Kitching, J.; Diddams, S.A.; et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv. 2020, 6, eaax6230. [Google Scholar] [CrossRef] [Green Version]
- Kakande, J.; Bogris, A.; Slavík, R.; Parmigiani, F.; Syvridis, D.; Sköld, M.; Westlund, M.; Petropoulos, P.; Richardson, D.J. QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier. In Proceedings of the Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2011), Los Angeles, CA, USA, 6–10 March 2011; p. OMT4. [Google Scholar]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef] [Green Version]
- Herr, T.; Hartinger, K.; Riemensberger, J.; Wang, C.Y.; Gavartin, E.; Holzwarth, R.; Gorodetsky, M.L.; Kippenberg, T.J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics 2012, 6, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Bottrill, K.R.H.; Kakarla, R.; Parmigiani, F.; Venkitesh, D.; Petropoulos, P. Phase Regeneration of QPSK Signal in SOA using Single-stage, Wavelength Converting PSA. IEEE Photonics Technol. Lett. 2016, 28, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Geng, Y.; Cui, W.; Huang, S.-W.; Zhou, Q.; Qiu, K.; Wong, C.W. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 2019, 8, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Geng, Y.; Ke, H.; Qiu, K. Phase Regeneration of QPSK Signals Based on Kerr Soliton Combs. Photonics 2023, 10, 701. https://doi.org/10.3390/photonics10060701
Han X, Geng Y, Ke H, Qiu K. Phase Regeneration of QPSK Signals Based on Kerr Soliton Combs. Photonics. 2023; 10(6):701. https://doi.org/10.3390/photonics10060701
Chicago/Turabian StyleHan, Xinjie, Yong Geng, Haocheng Ke, and Kun Qiu. 2023. "Phase Regeneration of QPSK Signals Based on Kerr Soliton Combs" Photonics 10, no. 6: 701. https://doi.org/10.3390/photonics10060701
APA StyleHan, X., Geng, Y., Ke, H., & Qiu, K. (2023). Phase Regeneration of QPSK Signals Based on Kerr Soliton Combs. Photonics, 10(6), 701. https://doi.org/10.3390/photonics10060701