Subwavelength-Scale 3D Broadband Unidirectional Waveguides Based on Surface Magnetoplasmons at Terahertz Frequencies
Abstract
1. Introduction
2. Basic Physical Model
3. Modal Properties
4. Subwavelength Isolator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghu, S.; Haldane, F.D.M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 2008, 78, 033834. [Google Scholar] [CrossRef][Green Version]
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef][Green Version]
- Jin, D.; Lu, L.; Wang, Z.; Fang, C.; Joannopoulos, J.D.; Soljačić, M.; Fu, L.; Fang, N.X. Topological magnetoplasmon. Nat. Commun. 2016, 7, 13486. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, J.; Luo, Y.; Xiao, S.; Kang, F.; Tsakmakidis, K.L. All-Optical Digital Logic Based on Unidirectional Modes. Adv. Opt. Mater. 2022, 11, 2201836. [Google Scholar] [CrossRef]
- Shen, L.; You, Y.; Wang, Z.; Deng, X. Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies. Opt. Express 2015, 23, 950. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, K.L.; Shen, L.; Schulz, S.A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A.F.; Boyd, R.W. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science 2017, 356, 1260–1264. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gangaraj, S.A.H.; Jin, B.; Argyropoulos, C.; Monticone, F. Broadband Field Enhancement and Giant Nonlinear Effects in Terminated Unidirectional Plasmonic Waveguides. Phys. Rev. Appl. 2020, 14, 054061. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829. [Google Scholar] [CrossRef][Green Version]
- Kim, M.; Gao, W.; Lee, D.; Ha, T.; Kim, T.T.; Zhang, S.; Rho, J. Extremely Broadband Topological Surface States in a Photonic Topological Metamaterial. Adv. Opt. Mater. 2019, 7, 1900900. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, R.Y.; Zhang, L.; Wang, D.; Guo, Q.; Zhang, Z.Q.; Chan, C. Topological One-Way Large-Area Waveguide States in Magnetic Photonic Crystals. Phys. Rev. Lett. 2021, 126, 067401. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Haldane, F.D.M.; Raghu, S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 2008, 100, 013904. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, Z.; Veronis, G.; Wang, Z.; Fan, S. One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal. Phys. Rev. Lett. 2008, 100, 023902. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang, Y.; Pakniyat, S.; Xiang, Y.; Chen, J.; Shi, F.; Hanson, G.W.; Cen, C. Tunable unidirectional surface plasmon polaritons at the interface between gyrotropic and isotropic conductors. Optica 2021, 8, 952. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, S.; He, P.; Wang, Y.; Shen, Y.; Hong, L.; Luo, Y.; He, B. Realization of broadband truly rainbow trapping in gradient-index metamaterials. Opt. Express 2022, 30, 3941. [Google Scholar] [CrossRef]
- Zou, J.; You, Y.; Deng, X.; Shen, L.; Wu, J.J.; Yang, T.J. High-efficiency tunable Y-branch power splitters at terahertz frequencies. Opt. Commun. 2017, 387, 153–156. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W.; Xing, H.; Chen, X. Design of Power Splitters Based on Hybrid Plasmonic Waveguides. Appl. Sci. 2021, 11, 8644. [Google Scholar] [CrossRef]
- Tan, Z.; Fan, F.; Zhao, D.; Ji, Y.; Cheng, J.; Chang, S. High-Efficiency Terahertz Nonreciprocal One-Way Transmission and Active Asymmetric Chiral Manipulation Based on Magnetoplasmon/Dielectric Metasurface. Adv. Opt. Mater. 2021, 9, 2002216. [Google Scholar] [CrossRef]
- Shen, Q.; Zheng, X.; Zhang, H.; You, Y.; Shen, L. Large-area unidirectional surface magnetoplasmons using uniaxial μ-near-zero material. Opt. Lett. 2021, 46, 5978. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- You, Y.; Xiao, S.; Wu, C.; Zhang, H.; Deng, X.; Shen, L. Unidirectional-propagating surface magnetoplasmon based on remanence and its application for subwavelength isolators. Opt. Mater. Express 2019, 9, 2415. [Google Scholar] [CrossRef]
- Buddhiraju, S.; Shi, Y.; Song, A.; Wojcik, C.; Minkov, M.; Williamson, I.A.D.; Dutt, A.; Fan, S. Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces. Nat. Commun. 2020, 11, 674. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gangaraj, S.A.H.; Monticone, F. Do truly unidirectional surface plasmon-polaritons exist? Optica 2019, 6, 1158. [Google Scholar] [CrossRef][Green Version]
- Brion, J.J.; Wallis, R.F.; Hartstein, A.; Burstein, E. Theory of Surface Magnetoplasmons in Semiconductors. Phys. Rev. Lett. 1972, 28, 1455–1458. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; You, Y.; Yuan, K.; Deng, X. One-Way Electromagnetic Mode Guided by the Mechanism of Total Internal Reflection. IEEE Photonics Technol. Lett. 2018, 30, 133–136. [Google Scholar] [CrossRef]
- Tamagnone, M.; Moldovan, C.; Poumirol, J.M.; Kuzmenko, A.B.; Ionescu, A.M.; Mosig, J.R.; Perruisseau-Carrier, J. Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 2016, 7, 11216. [Google Scholar] [CrossRef]
- Lin, S.; Silva, S.; Zhou, J.; Talbayev, D. A One-Way Mirror: High-Performance Terahertz Optical Isolator Based on Magnetoplasmonics. Adv. Opt. Mater. 2018, 6, 1800572. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, L.; Wang, Z.; Deng, W.; Hou, Z.; Zhang, C.; Yu, Y.; Wu, X.; Zhang, X. On-chip terahertz isolator with ultrahigh isolation ratios. Nat. Commun. 2021, 12, 5570. [Google Scholar] [CrossRef]
- Li, Q.; Tian, Z.; Zhang, X.; Singh, R.; Du, L.; Gu, J.; Han, J.; Zhang, W. Active graphene–silicon hybrid diode for terahertz waves. Nat. Commun. 2015, 6, 8082. [Google Scholar] [CrossRef][Green Version]
- Srivastava, Y.K.; Ako, R.T.; Gupta, M.; Bhaskaran, M.; Sriram, S.; Singh, R. Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett. 2019, 115, 151105. [Google Scholar] [CrossRef][Green Version]
- Silalahi, H.M.; Chen, Y.P.; Shih, Y.H.; Chen, Y.S.; Lin, X.Y.; Liu, J.H.; Huang, C.Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; You, Y.; Shen, L.; Shen, Q. Subwavelength-Scale 3D Broadband Unidirectional Waveguides Based on Surface Magnetoplasmons at Terahertz Frequencies. Photonics 2023, 10, 589. https://doi.org/10.3390/photonics10050589
Bao H, You Y, Shen L, Shen Q. Subwavelength-Scale 3D Broadband Unidirectional Waveguides Based on Surface Magnetoplasmons at Terahertz Frequencies. Photonics. 2023; 10(5):589. https://doi.org/10.3390/photonics10050589
Chicago/Turabian StyleBao, Han, Yun You, Linfang Shen, and Qian Shen. 2023. "Subwavelength-Scale 3D Broadband Unidirectional Waveguides Based on Surface Magnetoplasmons at Terahertz Frequencies" Photonics 10, no. 5: 589. https://doi.org/10.3390/photonics10050589
APA StyleBao, H., You, Y., Shen, L., & Shen, Q. (2023). Subwavelength-Scale 3D Broadband Unidirectional Waveguides Based on Surface Magnetoplasmons at Terahertz Frequencies. Photonics, 10(5), 589. https://doi.org/10.3390/photonics10050589