Design of Reflective Tunable Structural Color Metasurface Based on Guided-Mode Resonance Filter and Sb2S3
Abstract
:1. Introduction
2. Design of Metasurface
2.1. Main Structure
2.2. Optical Property of GMR Filter
2.3. Optical Properties of Sb2S3
3. Simulations of Dynamically Tunable Structural Color
3.1. Structural Color Characteristics of the Designed Metasurface
3.2. Dynamic Tuning Characteristics
3.3. Environment-Sensing Properties of Tunable Structural Color Metasurface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.; Kim, Y.; Mohd-Noor, S.; Hyun, J.K. Mie Resonant Structural Colors. ACS Appl. Mater. Interfaces 2020, 12, 5300–5318. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, Y.; Suzuki, M.; Takahara, J. All-Dielectric Dual-Color Pixel with Subwavelength Resolution. Nano Lett. 2017, 17, 7500–7506. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Yu, J.; Han, J.; Tsai, D.-P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864 . [Google Scholar] [CrossRef] [Green Version]
- Cerjan, B.; Gerislioglu, B.; Link, S.; Nordlander, P.; Halas, N.J.; Griep, M. Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. Nanotechnology 2022, 33, 405201. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Wen, Y.; Xu, X.C.; Lin, Y.S. Metamaterial grating for colorimetric chemical sensing applications. Mater. Today Phys. 2023, 33, 101056. [Google Scholar] [CrossRef]
- Tan, S.J.; Zhang, L.; Zhu, D.; Goh, X.M.; Wang, Y.M.; Kumar, K.; Qiu, C.W.; Yang, J.K.W. Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Lett. 2014, 14, 4023–4029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Vannahme, C.; Hojlund-Nielsen, E.; Mortensen, N.A.; Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 2016, 11, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhou, Z.X.; Zhang, C.; Gao, Y.S.; Duan, Z.H.; Xiao, S.M.; Song, Q.H. All-Dielectric Full-Color Printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhuo, X.L.; Wang, J.F. Advanced Plasmonic Materials for Dynamic Color Display. Adv. Mater. 2018, 30, 1704338. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, W.W.; Li, Z.C.; Cheng, H.; Chen, S.Q.; Tian, J.G. Polarization-Sensitive Structural Colors with Hue-and-Saturation Tuning Based on All-Dielectric Nanopixels. Adv. Opt. Mater. 2018, 6, 1701009. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Duan, X.Y.; Matuschek, M.; Zhou, Y.M.; Neubrech, F.; Duan, H.G.; Liu, N. Dynamic Color Displays Using Stepwise Cavity Resonators. Nano Lett. 2017, 17, 5555–5560. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Yang, W.H.; Zhang, C.; Jing, J.X.; Gao, Y.S.; Yu, X.Y.; Song, Q.H.; Xiao, S.M. Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces. ACS Nano 2018, 12, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Raeis-Hosseini, N.; Rho, J. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices. Materials 2017, 10, 1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlich, F.F.; Zalden, P.; Lindenberg, A.M.; Spolenak, R. Color Switching with Enhanced Optical Contrast in Ultrathin Phase-Change Materials and Semiconductors Induced by Femtosecond Laser Pulses. Acs Photonics 2015, 2, 178–182. [Google Scholar] [CrossRef]
- Liu, W.; Lai, Z.; Guo, H.; Liu, Y. Guided-mode resonance filters with shallow grating. Opt. Lett. 2010, 35, 865–867. [Google Scholar] [CrossRef]
- Priambodo, P.S.; Maldonado, T.A.; Magnusson, R. Fabrication and characterization of high-quality waveguide-mode resonant optical filters. Appl. Phys. Lett. 2003, 83, 3248–3250. [Google Scholar] [CrossRef]
- Tibuleac, S.; Magnusson, R. Reflection and transmission guided-mode resonance filters. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 1617–1626. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, S.; Zheng, W. Wavelength-tunable perfect absorber based on guided-mode resonances. Appl. Opt. 2016, 55, 3176–3181. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Xu, B.; Huang, Y.; Tao, C.; Wang, C.; Li, B.; Ni, Z.; Zhuang, S. Colored image produced with guided-mode resonance filter array. Opt. Lett. 2011, 36, 4698–4700. [Google Scholar] [CrossRef]
- Sakat, E.; Vincent, G.; Ghenuche, P.; Bardou, N.; Dupuis, C.; Collin, S.; Pardo, F.; Haidar, R.; Pelouard, J.L. Free-standing guided-mode resonance band-pass filters: From 1D to 2D structures. Opt. Express 2012, 20, 13082–13090. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.; Pardo, F.; Teissier, R.; Pelouard, J.L. Strong discontinuities in the complex photonic band structure of transmission metallic gratings. Phys. Rev. B 2001, 63, 033107. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.J.; Magnusson, R. Highly efficient color filter array using resonant Si3N4 gratings. Opt. Express 2013, 21, 12495–12506. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Carrillo, S.G.C.; Trimby, L.; Au, Y.Y.; Nagareddy, V.K.; Rodriguez-Hernandez, G.; Hosseini, P.; Ros, C.; Bhaskaran, H.; Wright, C.D. A Nonvolatile Phase-Change Metamaterial Color Display. Adv. Opt. Mater. 2019, 7, 1801782. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.E.; Krbal, M.; Fons, P.; Kolobov, A.V.; Tominaga, J.; Uruga, T.; Tanida, H. Toward the Ultimate Limit of Phase Change in Ge2Sb2Te5. Nano Lett. 2010, 10, 414–419. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Bakan, G.; Ahuja, R.; Adam, J.; Mishra, Y.K.; Ahmadivand, A. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater. Today Phys. 2020, 12, 100178. [Google Scholar] [CrossRef]
- Kepič, P.; Ligmajer, F.; Hrtoň, M.; Ren, H.; Menezes, L.d.S.; Maier, S.A.; Šikola, T. Optically Tunable Mie Resonance VO2 Nanoantennas for Metasurfaces in the Visible. ACS Photonics 2021, 8, 1048–1057. [Google Scholar] [CrossRef]
- de Galarreta, C.R.; Sinev, I.; Alexeev, A.M.; Trofimov, P.; Ladutenko, K.; Carrillo, S.G.C.; Gemo, E.; Baldycheva, A.; Bertolotti, J.; Wright, C.D. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 2020, 7, 476–484. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Behera, J.K.; Lu, L.; Ng, R.J.H.; Sreekanth, K.V.; Zhou, X.; Yang, J.K.W.; Simpson, R.E. Wide Bandgap Phase Change Material Tuned Visible Photonics. Adv. Funct. Mater. 2019, 29, 1806181. [Google Scholar] [CrossRef] [Green Version]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, X.; Zhou, F.; Xiao, X.S.; Xu, Y.L.; Zhang, Z.P. Tunable color gamut based a symmetric microcavity governed by Sb2S3. Opt. Commun. 2022, 508, 127683. [Google Scholar] [CrossRef]
- Fang, Z.R.; Zheng, J.J.; Saxena, A.; Whitehead, J.; Chen, Y.Y.; Majumdar, A. Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material. Adv. Opt. Mater. 2021, 9, 2002049. [Google Scholar] [CrossRef]
- Gao, K.; Du, K.; Tian, S.M.; Wang, H.; Zhang, L.; Guo, Y.X.; Luo, B.C.; Zhang, W.D.; Mei, T. Intermediate Phase-Change States with Improved Cycling Durability of Sb2S3 by Femtosecond Multi-Pulse Laser Irradiation. Adv. Funct. Mater. 2021, 31, 2103327. [Google Scholar] [CrossRef]
- Lee, B.S.; Abelson, J.R.; Bishop, S.G.; Kang, D.H.; Cheong, B.K.; Kim, K.B. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 2005, 97, 093509. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Zhang, W. First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials. Opt. Mater. Express 2022, 12, 2497–2506. [Google Scholar] [CrossRef]
- Rana, R.S.; Nolte, D.D.; Chudnovski, F.A. Optical bistability from a thermodynamic phase transition in vanadium dioxide. Opt. Lett. 1992, 17, 1385–1387. [Google Scholar] [CrossRef]
- Wang, H.; Guo, T.; Xue, Y.; Lv, S.; Yao, D.; Zhou, Z.; Song, S.; Song, Z. The phase change memory features high-temperature characteristic based on Ge-Sb-Se-Te alloys. Mater. Lett. 2019, 254, 182–185. [Google Scholar] [CrossRef]
- Markov, P.; Marvel, R.E.; Conley, H.J.; Miller, K.J.; Haglund, R.F.; Weiss, S.M. Optically Monitored Electrical Switching in VO2. ACS Photonics 2015, 2, 1175–1182. [Google Scholar] [CrossRef]
- Sahoo, D.; Naik, R. GSST phase change materials and its utilization in optoelectronic devices: A review. Mater. Res. Bull. 2022, 148, 111679. [Google Scholar] [CrossRef]
- Lee, H.C.; Jeong, J.H.; Choi, D.J. Characterization of phase-change behavior of a Ge2Sb2Te5 thin film using finely controlled electrical pulses for switching. Semicond. Sci. Technol. 2016, 31, 095006. [Google Scholar] [CrossRef]
- De Leonardis, F.; Soref, R.; Passaro, V.M.N.; Zhang, Y.F.; Hu, J.J. Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material. J. Light. Technol. 2019, 37, 3183–3191. [Google Scholar] [CrossRef]
- Sun, X.N.; Qu, Z.M.; Yuan, J.H.; Cheng, E.W.; Wang, P.P.; Wang, Q.G. Voltage-induced phase transition of VO2@SiO2 nanoparticles. Ceram. Int. 2021, 47, 29011–29022. [Google Scholar] [CrossRef]
PCMs | Bandgap | Transition Temperature | Switching Time | Drive Manner | Cycling Durability | Phase-Change Property | Ability to Tune Color |
---|---|---|---|---|---|---|---|
Sb2S3 | 1.7~2 eV [33] | 270 °C/543 K [31] | 78 ns [30] | light-operated, 45~55 mw [31] | >7000 cycles [34] | non-volatile | high |
GST | 0.5~0.7 eV [35] | 160 °C/433 K [14] | 50 ns [26] | electric control, 1.2 V [41] | >1015 cycles [25] | non-volatile | low |
GSST | 0.42~0.73 eV [36] | 400 °C/673 K [31] | 300 ns [38] | electric control, <12 V [40], 5~24 V [42] | 105 cycles [40] | non-volatile | medium |
VO2 | 0.6 eV [37] | 68 °C/341 K [31] | 2~3 ns [39] | electric control 20.68 V [43] | volatile | medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Zhang, Z.; He, X.; Zhang, Z.; Li, X.; Fu, M.; Yang, J. Design of Reflective Tunable Structural Color Metasurface Based on Guided-Mode Resonance Filter and Sb2S3. Photonics 2023, 10, 752. https://doi.org/10.3390/photonics10070752
Luo S, Zhang Z, He X, Zhang Z, Li X, Fu M, Yang J. Design of Reflective Tunable Structural Color Metasurface Based on Guided-Mode Resonance Filter and Sb2S3. Photonics. 2023; 10(7):752. https://doi.org/10.3390/photonics10070752
Chicago/Turabian StyleLuo, Shishang, Zhenfu Zhang, Xin He, Zhaojian Zhang, Xin Li, Meicheng Fu, and Junbo Yang. 2023. "Design of Reflective Tunable Structural Color Metasurface Based on Guided-Mode Resonance Filter and Sb2S3" Photonics 10, no. 7: 752. https://doi.org/10.3390/photonics10070752
APA StyleLuo, S., Zhang, Z., He, X., Zhang, Z., Li, X., Fu, M., & Yang, J. (2023). Design of Reflective Tunable Structural Color Metasurface Based on Guided-Mode Resonance Filter and Sb2S3. Photonics, 10(7), 752. https://doi.org/10.3390/photonics10070752