All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoover, E.; Squier, J. Advances in multiphoton microscopy technology. Nat. Photonics 2013, 7, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chia, S.H.; Chung, H.Y.; Greinert, R.; Kärtner, F.; Chang, G. Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy. Opt. Express 2017, 25, 6822–6831. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, P.; Li, X.; Jin, Z. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon 2019, 149, 336–341. [Google Scholar] [CrossRef]
- Horowitz, M.; Menyuk, C.R.; Carruthers, T.F.; Duling, I.N. Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems. J. Lightw. Technol. 2000, 18, 1565–1574. [Google Scholar] [CrossRef] [Green Version]
- Kongas, J.; Amberla, T.; Rekow, M. Metal Micromachining with a New High Average Power Picosecond Pulse Fiber Laser. In Proceedings of the International Congress on Applications of Lasers and Electro-Optics, Wuhan, China, 23–25 March 2006. [Google Scholar]
- Shah, L.; Fermann, M.; Dawson, J.; Barty, C. Micromachining with a 50 W, 50 µJ, sub-picosecond fiber laser system. Opt. Express 2006, 14, 12546–12551. [Google Scholar] [CrossRef]
- Lee, K.; Ding, X.; Hammond, T.J.; Fermann, M.E.; Vampa, G.; Corkum, P.B. Harmonic generation in solids with direct fiber laser pumping. Opt. Lett. 2017, 42, 1113–1116. [Google Scholar] [CrossRef]
- Zhao, Z.; Kobayashi, Y. Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express 2017, 25, 13517–13526. [Google Scholar] [CrossRef]
- Guan, M.; Chen, D.; Hu, S.; Zhao, H.; You, P.; Meng, S. Theoretical Insights into Ultrafast Dynamics in Quantum Materials. Ultrafast Sci. 2022, 2022, 9767251. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, Y.; Xia, T.; Wang, L.; Han, B.; He, F.; Sheng, Z.; Zhang, J. Bessel Terahertz Pulses from Superluminal Laser Plasma Filaments. Ultrafast Sci. 2022, 2022, 9870325. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Cui, Y. Real-Time Observation of the Buildup of Soliton Molecules. Phys. Rev. Lett. 2018, 121, 023905. [Google Scholar] [CrossRef]
- Liu, X.; Pang, M. Revealing the Buildup Dynamics of Harmonic Mode-Locking States in Ultrafast Lasers. Laser Photonics Rev. 2019, 13, 1800333. [Google Scholar] [CrossRef]
- Liu, X.; Popa, D.; Akhmediev, N. Revealing the Transition Dynamics from Q Switching to Mode Locking in a Soliton Laser. Phys. Rev. Lett. 2019, 123, 093901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Ma, Y.; Gao, X.; Niu, F.; Jiang, T.; Wang, A.; Zhang, Z. 1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency. Appl. Opt. 2015, 54, 8350–8353. [Google Scholar] [CrossRef]
- Liu, Z.; Ziegler, Z.; Wright, L.; Wise, F. Megawatt peak power from a Mamyshev oscillator. Optica 2017, 4, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, M.; Gu, C.; Chai, L.; Wang, C.; Zheltikov, A.M. Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion. Laser Phys. Lett. 2010, 7, 230–235. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, K.; Su, J.; Xie, N.; Huang, X.; Zeng, X.; Wang, X.; Wang, X.; Zuo, Y.; Jiang, D.; et al. The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams. Laser Phys. Lett. 2017, 15, 015301. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, B.; Dong, K.; Lu, F.; He, S.; Zhang, B.; Yan, Y.; Yu, M.; Tan, F.; Wang, S.; et al. XingGuang III laser facility and its experimental ability to drive high-energy particle beams. Laser Phys. 2020, 30, 096001. [Google Scholar] [CrossRef]
- Cavalieri, A.; Fritz, D.; Lee, S.; Bucksbaum, P.; Reis, D.; Rudati, J.; Mills, D.; Fuoss, P.; Stephenson, G.; Kao, C.; et al. Clocking femtosecond X rays. Phys. Rev. Lett. 2005, 94, 114801. [Google Scholar] [CrossRef] [Green Version]
- Damerau, H. CERN: Timing, Synchronization & Longitudinal Aspects. CERN Yellow Rep. School Proc. 2018, 5, 163. [Google Scholar]
- Papadopoulos, D.N.; Ramirez, P.; Genevrier, K.; Ranc, L.; Lebas, N.; Pellegrina, A.; Le Blanc, C.; Monot, P.; Martin, L.; Zou, J.P.; et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains. Opt. Lett. 2017, 42, 3530–3533. [Google Scholar] [CrossRef]
- Puppin, M.; Deng, Y.; Prochnow, O.; Ahrens, J.; Binhammer, T.; Morgner, U.; Krenz, M.; Wolf, M.; Ernstorfer, R. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser. Opt. Express 2015, 23, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
- Khegai, A.; Melkumov, M.; Riumkin, K.; Khopin, V.; Firstov, S.; Dianov, E. NALM-based bismuth-doped fiber laser at 1.7 μm. Opt. Lett. 2018, 43, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, S.; Kobtsev, S.; Ivanenko, A.; Kokhanovskiy, A.; Kemmer, A.; Gervaziev, M. Layout of NALM fiber laser with adjustable peak power of generated pulses. Opt. Lett. 2017, 42, 1732–1735. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Teng, H.; Wang, H.; Wang, L.; Zhu, J.; Fang, S.; Chang, G.; Wang, J.; Wei, Z. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM. Opt. Express 2018, 26, 10428–10434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Wang, A.; Zhang, Z. 84-fs 500-MHz Yb:Fiber-Based Laser Oscillator Mode Locked by Biased NALM. IEEE Photonics Technol. Lett. 2017, 29, 2055–2058. [Google Scholar] [CrossRef]
- Gao, W.; Liu, G.; Zhang, Z. 44.6 fs pulses from a 257 MHz Er:fiber laser mode-locked by biased NALM. Chin. Opt. Lett. 2018, 16, 111401. [Google Scholar]
- Chong, A.; Renninger, W.; Wise, F. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett. 2007, 32, 2408–2410. [Google Scholar] [CrossRef] [PubMed]
- Aguergaray, C.; Hawker, R.; Runge, A.; Erkintalo, M.; Broderick, N. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser. Appl. Phys. Lett. 2013, 103, 121111. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Gao, Y.X.; Li, X.; Lu, H.; Wang, Y.; Feng, J.; Lu, J.; Ma, K.; Chen, X. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics. Opt. Laser Technol. 2022, 146, 107546. [Google Scholar] [CrossRef]
- Schimpf, D.; Limpert, J.; Tünnermann, A. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum. Opt. Express 2007, 15, 16945–16953. [Google Scholar] [CrossRef]
- Song, H.; Liu, B.; Chen, W.; Li, Y.; Song, Y.; Wang, S.; Chai, L.; Wang, C.; Hu, M. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses. Opt. Express 2018, 26, 26411–26421. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, H.; Gao, K.; Qiao, W.; Feng, T.; Zhao, X.; Liu, Y. All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser. Photonics 2023, 10, 665. https://doi.org/10.3390/photonics10060665
Zhang Y, Zhang H, Gao K, Qiao W, Feng T, Zhao X, Liu Y. All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser. Photonics. 2023; 10(6):665. https://doi.org/10.3390/photonics10060665
Chicago/Turabian StyleZhang, Yinuo, Hao Zhang, Kong Gao, Wenchao Qiao, Tianli Feng, Xian Zhao, and Yizhou Liu. 2023. "All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser" Photonics 10, no. 6: 665. https://doi.org/10.3390/photonics10060665
APA StyleZhang, Y., Zhang, H., Gao, K., Qiao, W., Feng, T., Zhao, X., & Liu, Y. (2023). All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser. Photonics, 10(6), 665. https://doi.org/10.3390/photonics10060665