Restoration of Atmospheric Turbulence-Degraded Short-Exposure Image Based on Convolution Neural Network
Abstract
:1. Introduction
- We tune a turbulence simulator based on a physical model to generate a large-scale dataset. The highly realistic and diverse dataset provides strong support for the training of our neural network.
- Realizing the limitations of lucky image fusion and blind deconvolution algorithms, we introduced convolutional neural networks to replace the original two algorithms. Our algorithm reduces the requirements for computation time while ensuring the effectiveness of image restoration.
2. Method
2.1. Problem Setting and Motivation
2.2. Construction of Reference Frame and Optical Flow Registration
2.3. Data Sets Generation
Algorithm 1. Using Zernike polynomials to generate PSF conforming to turbulence characteristics |
Input: None Output: PSF matrix STEP 1: of their coefficients STEP 2: is the unitary matrix STEP 3: STEP 4: STEP 5: using Equation (7) STEP 6: |
2.4. Feature Extraction Technology
2.5. Structure of Convolution Neural Network
2.6. Model Hyperparameter Details
3. Experimental Results and Analysis
3.1. Training Results
3.2. Comparison of Actual Restoration Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tatarskii, V.I. Wave propagation in a turbulent medium. Science 1961, 134, 324–325. [Google Scholar] [CrossRef]
- Mao, Z.; Chimitt, N.; Chan, S.H. Image Reconstruction of Static and Dynamic Scenes Through Anisoplanatic Turbulence. IEEE Trans. Comput. Imaging 2020, 6, 1415–1428. [Google Scholar] [CrossRef]
- Paxman, R.G.; Rogne, T.J.; Sickmiller, B.A.; Lemaster, D.A.; Miller, J.J.; Vollweiler, C.G. Spatial stabilization of deep-turbulence-induced anisoplanatic blur. Opt. Express 2016, 24, 29109–29125. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, W.; Tao, D.; Hu, W.; Qu, Y.; Wang, H. Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 2016, 25, 4943–4958. [Google Scholar] [CrossRef]
- Hardie, R.C.; Rucci, M.A.; Dapore, A.J.; Karch, B.K. Block matching and wiener filtering approach to optical turbulence mitigation and its application to simulated and real imagery with quantitative error analysis. Opt. Eng. 2017, 56, 071503. [Google Scholar] [CrossRef]
- Gilles, J.; Osher, S. Wavelet burst accumulation for turbulence mitigation. J. Electron. Imaging 2016, 25, 033003. [Google Scholar] [CrossRef]
- Fried, D.L. Probability of getting a lucky short-exposure image through turbulence. J. Opt. Soc. Am. 1978, 68, 1651–1658. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Achim, A.; Kingsbury, N.G.; Bull, D.R. Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Trans. Image Process. 2013, 22, 2398–2408. [Google Scholar] [CrossRef] [Green Version]
- Aubailly, M.; Vorontsov, M.A.; Carhart, G.W.; Valley, M.T. Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach. Proc. SPIE 2009, 74, 74630C. [Google Scholar]
- Zhu, X.; Milanfar, P. Removing atmospheric turbulence via spaceinvariant deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.P.; Lai, Y.H.; Lui, L.M. Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps. Inverse Probl. 2019, 35. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Wang, Z.; Fan, Y.; Feng, D. Atmospheric turbulence mitigation based on turbulence extraction. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 1442–1446. [Google Scholar]
- Zhang, Z.; Yang, X. Reconstruction of distorted underwater images using robust registration. Opt. Express 2019, 27, 9996–10008. [Google Scholar] [CrossRef] [PubMed]
- Vorontsov, S.V.; Strakhov, V.N.; Jefferies, S.M.; Borelli, K.J. Deconvolution of astronomical images using SOR with adaptive relaxation. Opt. Express 2011, 19, 13509–13524. [Google Scholar] [CrossRef]
- Shan, Q.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar]
- Fried, D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 1966, 56, 1372–1379. [Google Scholar] [CrossRef]
- Chen, G.; Gao, Z.; Wang, Q.; Luo, Q. U-net like deep autoencoders for deblurring atmospheric turbulence. J. Electron. Imaging 2019, 28, 053024–053034. [Google Scholar] [CrossRef]
- Fazlali, H.R.; Shirani, S.; BradforSd, M.; Kirubarajan, T. Atmospheric Turbulence Removal in Long-Range Imaging Using a Data-Driven-Based Approach. Int. J. Comput. Vis. 2022, 130, 1031–1049. [Google Scholar] [CrossRef]
- Hoffmire, M.A.; Hardie, R.C.; Rucci, M.A.; Van Hook, R.L.; Karch, B.K. Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging. Opt. Eng. 2021, 60, 033103–033113. [Google Scholar] [CrossRef]
- Mao, Z.; Jaiswal, A.; Wang, Z.; Chan, S.H. Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A New Physics-Inspired Transformer Model. Eur. Conf. Comput. Vis. 2022, 60, 033103–033124. [Google Scholar]
- Candés, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, G.; Yao, J.; Qi, C. Background subtraction based on low-rank and structured sparse decomposition. IEEE Trans. Image Process. 2015, 24, 2502–2514. [Google Scholar] [CrossRef]
- Amiaz, T.; Lubetzky, E.; Kiryati, N. Coarse to over-fine optical flow estimation. Pattern Recognit. 2007, 40, 2496–2503. [Google Scholar] [CrossRef] [Green Version]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. JOsA 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Chimitt, N.; Chan, S.H. Simulating Anisoplanatic Turbulence by Sampling Correlated Zernike Coefficients. In Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP), St. Louis, MO, USA, 24–26 April 2020; pp. 1–12. [Google Scholar]
- Fried, D.L. Limiting resolution looking down through the atmosphere. J. Opt. Soc. Am. 1966, 56, 1380–1384. [Google Scholar] [CrossRef]
- Roggemann, M.; Welsh, B.; Hunt, B. Imaging Through Turbulence; Laser & Optical Science & Technology; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Groen, F.; Young, I.; Ligthard, G. A comparison of different focus functions for use in autofocus algorithms. Cytometry 1985, 6, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolon-Canedo, V.; Remeseiro, B. Feature selection in image analysis: A survey. Artif. Intell. Rev. 2020, 53, 2905–2931. [Google Scholar] [CrossRef]
- Kabir, H.; Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements. Sci. Rep. 2023, 13, 1497. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Path length | |
Aperture diameter | |
Focal length | |
Wavelength | |
Zernike phase size | |
Image size | |
Layer Number | 1,3,6,9, 12,15,18,21 | 23,26,29,32, 35,38,41,44 | 2,5,8,11,14,17,20 | 22,25,28,31, 34,37,40,43 | 4,7,10,13,16,19,24,27,30,33,36,39,42,45 |
---|---|---|---|---|---|
Type | Conv | ConvTrans | LeakyReLU | ReLU | BN |
Kernel | - | - | - | ||
Stride | - | - | - | ||
Padding | 1 | 1 | |||
- | - | 0.2 | 0 | - |
Images | Mean PSNR/dB (↑) | Mean SSIM/% (↑) |
---|---|---|
22.94 | 64.65 | |
29.26 | 87.64 | |
22.91 | 63.78 | |
28.14 | 84.67 | |
22.45 | 59.50 | |
25.56 | 75.08 |
Parameter | Value |
---|---|
Path length | |
Aperture diameter | |
Focal length | |
Atmospheric coherent length | |
Exposure time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Zhu, W.; Li, J.; Xu, G.; Chen, X.; Yao, C. Restoration of Atmospheric Turbulence-Degraded Short-Exposure Image Based on Convolution Neural Network. Photonics 2023, 10, 666. https://doi.org/10.3390/photonics10060666
Cheng J, Zhu W, Li J, Xu G, Chen X, Yao C. Restoration of Atmospheric Turbulence-Degraded Short-Exposure Image Based on Convolution Neural Network. Photonics. 2023; 10(6):666. https://doi.org/10.3390/photonics10060666
Chicago/Turabian StyleCheng, Jiuming, Wenyue Zhu, Jianyu Li, Gang Xu, Xiaowei Chen, and Cao Yao. 2023. "Restoration of Atmospheric Turbulence-Degraded Short-Exposure Image Based on Convolution Neural Network" Photonics 10, no. 6: 666. https://doi.org/10.3390/photonics10060666
APA StyleCheng, J., Zhu, W., Li, J., Xu, G., Chen, X., & Yao, C. (2023). Restoration of Atmospheric Turbulence-Degraded Short-Exposure Image Based on Convolution Neural Network. Photonics, 10(6), 666. https://doi.org/10.3390/photonics10060666