Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror
Abstract
1. Introduction
2. Experiment Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Hill, C.A.; Tapster, P.R.; Vaughan, J.M. Laser modes with helical wave fronts. Phys. Rev. A 1994, 49, 3119–3122. [Google Scholar] [CrossRef] [PubMed]
- Čižmár, T.; Brzobohatý, O.; Dholakia, K.; Zemánek, P. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett. 2011, 8, 50–56. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Perez-Garcia, B.; Francis, J.; McLaren, M.; Hernandez-Aranda, R.I.; Forbes, A.; Konrad, T. Quantum computation with classical light: The Deutsch Algorithm. Phys. Lett. A 2015, 379, 1675–1680. [Google Scholar] [CrossRef][Green Version]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef][Green Version]
- Huang, H.; Xie, G.D.; Yan, Y.; Ahmed, N.; Ren, Y.X.; Yue, Y.; Rogawski, D.; Willner, M.J.; Erkmen, B.I.; Birnbaum, K.M.; et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 2014, 39, 197–200. [Google Scholar] [CrossRef][Green Version]
- Syubaev, S.; Zhizhchenko, A.; Kuchmizhak, A.; Porfirev, A.; Pustovalov, E.; Vitrik, O.; Kulchin, Y.; Khonina, S.; Kudryashov, S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express 2017, 25, 10214–10223. [Google Scholar] [CrossRef][Green Version]
- Polyakov, O.P.; Gonoskov, I.A.; Stepanyuk, V.S.; Gross, E.K.U. Generation of magnetic skyrmions by focused vortex laser pulses. J. Appl. Phys. 2020, 127, 073904. [Google Scholar] [CrossRef]
- Wang, B.; Tanksalvala, M.; Zhang, Z.; Esashi, Y.; Jenkins, N.W.; Murnane, M.M.; Kaptern, H.C.; Liao, C.-T. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 2020, 29, 3342–3358. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Brooks, N.J.; Johnsen, P.C.; Jenkins, N.W.; Esashi, Y.; Binnie, I.; Tanksalvala, M.; Kapteyn, H.C.; Murnane, M.M. High-fidelity ptychographic imaging of highly periodic structures enabled by vortex high harmonic beams. arXiv 2023, arXiv:2301.05563. [Google Scholar]
- Li, Z.; Liu, T.; Ren, Y.; Qiu, S.; Wang, C.; Wang, H. Direction-sensitive detection of spinning object using dual-frequency vortex light. Opt. Express 2021, 29, 7453–7463. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.W.; Li, Y.L.; Hu, W.W.; Chen, Z.W.; Sun, X.T. Intracavity cascade pumped 493.1nm blue laser. Optik 2020, 219, 165126. [Google Scholar] [CrossRef]
- Courtial, J.; Padgett, M.J. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt. Commun. 1999, 159, 13–18. [Google Scholar] [CrossRef]
- Heckenberg, N.R.; McDuff, R.; Smith, C.P.; White, A.G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef]
- Matsumoto, N.; Ando, T.; Inoue, T.; Ohtake, Y.; Fukuchi, N.; Hara, T. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A 2008, 25, 1642–1651. [Google Scholar] [CrossRef]
- Xin, J.; Dai, K.; Zhong, L.; Na, Q.; Gao, C. Generation of optical vortices by using spiral phase plates made of polarization dependent devices. Opt. Lett. 2014, 39, 1984–1987. [Google Scholar] [CrossRef]
- Shvedov, V.G.; Izdebskaya, Y.V.; Alekseev, A.N.; Volyar, A.V. The formation of optical vortices in the course of light diffraction on a dielectric wedge. Tech. Phys. Lett. 2002, 28, 256–259. [Google Scholar] [CrossRef]
- Yang, Y.M.; Wang, W.Y.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Liu, Q.Y.; Zhou, W.; Shen, D.Y. ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity. Opt. Express 2016, 24, 15596–15602. [Google Scholar] [CrossRef]
- Li, G.Y.; Xia, K.G.; Wang, Z.Y.; Shen, H.; Shirakawa, A.; Ueda, K.-I.; Li, J.L. Conical refraction, for annular pumping of an efficient vortex Nd:YAG laser. Laser Phys. Lett. 2017, 14, 075001. [Google Scholar] [CrossRef]
- He, H.S.; Chen, Z.; Li, H.B.; Dong, J. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser. Laser Phys. 2018, 28, 055802. [Google Scholar] [CrossRef]
- Huang, X.X.; Xu, B.; Cui, S.W.; Xu, H.Y.; Cai, Z.P.; Chen, L.X. Direct Generation of Vortex Laser by Rotating Induced Off-Axis Pumping. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1601606. [Google Scholar] [CrossRef]
- Uesugi, Y.; Sato, S.; Kozawa, Y. Direct generation of the lowest-order vortex beam using a spot defect mirror in the ultraviolet region. Opt. Lett. 2020, 45, 2115–2118. [Google Scholar] [CrossRef]
- Kano, K.; Kozawa, Y.; Sato, S. Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror. Int. J. Opt. 2011, 2012, 359141. [Google Scholar] [CrossRef][Green Version]
- Qiao, Z.; Xie, G.Q.; Wu, Y.H.; Yuan, P.; Ma, J.G.; Qiao, L.J.; Fan, D.Y. Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order. Laser Photon. Rev. 2018, 12, 1800019. [Google Scholar] [CrossRef][Green Version]
- Lee, A.J.; Zhang, C.Y.; Omatsu, T.; Pask, H.M. An intracavity, frequency-doubled self-Raman vortex laser. Opt. Express 2014, 22, 5400–5409. [Google Scholar] [CrossRef]
- Hu, W.W.; Li, Y.L.; Hu, C.W.; Gu, X.K.; Liu, H.X.; Zhang, Y.P.; Zhang, Y.M. Intra-cavity cascaded pumped 912nm/1030nm dual wavelength laser output. Opt. Commun. 2019, 452, 440–444. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Xiao, H.D.; Yu, Y.J.; Jin, G.Y. Construction of 879 nm direct intra-cavity pumped dual-wavelength laser operating at 912 nm and 1064 nm. Opt. Laser Technol. 2019, 115, 477–480. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.; Ito, I.; Kobayashi, Y. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Continuum. 2019, 2, 523–530. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Yu, Y.J.; Wang, C.; Zhang, X.M. Output characteristics of no gain competition 912 nm and 1064 nm dual-wavelength lasers. Opt. Laser Technol. 2019, 115, 125–128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, Y.; Zhu, X.; Wang, C.; Yang, C. Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics 2023, 10, 554. https://doi.org/10.3390/photonics10050554
Yang Y, Li Y, Zhu X, Wang C, Yang C. Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics. 2023; 10(5):554. https://doi.org/10.3390/photonics10050554
Chicago/Turabian StyleYang, Yashuai, Yongliang Li, Xinyi Zhu, Chi Wang, and Chao Yang. 2023. "Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror" Photonics 10, no. 5: 554. https://doi.org/10.3390/photonics10050554
APA StyleYang, Y., Li, Y., Zhu, X., Wang, C., & Yang, C. (2023). Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics, 10(5), 554. https://doi.org/10.3390/photonics10050554