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Abstract: Due to their unique properties, vortex lasers have high application value in frontier fields
such as optical micromanipulation, super-resolution imaging, quantum entanglement, and optical
communication. In this study, we demonstrated a 946/1030 nm Laguerre-Gaussian (LG01) mode
dual-wavelength vortex laser by using an intracavity cascade pumped structure and a spot-defect
output mirror. Using a coaxial linear cavity structure, the 808 nm laser diode (LD) was used to
end-pump the Nd:YAG crystal to generate a 946 nm laser and then use it to directly pump the
Yb:YAG crystal in the cavity to generate a 1030 nm laser, and finally a 946/1030 nm dual-wavelength
laser came out. By making a spot defect in the center of the output mirror to suppress the oscillation
of the fundamental Gaussian mode laser and carefully adjusting the position of the laser crystals, the
LG01 mode dual-wavelength vortex laser was output in single handedness. When the pump power
was 40 W, the total output was 664 mW (356 and 308 mW at 946 and 1030 nm LG01 mode vortex
lasers), and the total optical-optical conversion efficiency was 1.7%; the output power fluctuations of
946 and 1030 nm LG01 mode vortex lasers within 1 h were 3.43% and 3.13%, respectively; the beam
quality factors M2 of 946 and 1030 nm LG01 mode vortex lasers were 2.35 and 2.40, respectively. It
was proved that the generated dual-wavelength vortex laser had the wavefront phase exp(iφ) by the
self-interference method.

Keywords: dual-wavelength; LG01 mode; spot-defect mirror; intra-cavity pumped

1. Introduction

Compared with fundamental Gaussian beams, LG beams have an annular-shaped
profile, a spiral wavefront, and orbital angular momentum [1,2]. Due to their unique charac-
teristics, LG beams have been applied in a series of frontier applications. In the early days,
LG beams were applied to optical trapping and manipulation [3,4], stimulated emission
depletion microscopy [5,6], quantum information [7,8], and space multiplexing optical
communications [9,10]. Recently, with the continuous development of LG beam research,
applications in several new fields have been found in terms of LG beams, such as the
creation of micro- and nano-needle structures [11], generation of magnetic skyrmions [12],
in-line nanoscale defect inspection with high sensitivity and robustness [13], reliable pty-
chographic imaging of highly periodic structures [14], etc. In addition, the concept of vortex
light is introduced into the dual-wavelength laser, and the dual-wavelength LG-mode laser
is brought into operation as a new type of laser to further improve the performance of
existing applications or to bring forth innovative progress in applications. For example,
dual-frequency 2-fold multiplexed vortex light is used as the detection beam to measure
the angular velocity, successfully reducing the low frequency noise signal generated when
using single-frequency vortex light measurements and allowing direct access to the di-
rection of rotation [15]. Additionally, based on the advantage of high power density in
the cavity [16], the dual-wavelength LG beam can be used for sum-frequency operation
in the resonant cavity with high efficiency to further obtain the vortex beam in the blue
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wavelength band. Therefore, the study of dual-wavelength LG mode lasers is one of the
important research directions for vortex optical lasers.

Currently, the methods of LG beam generation are mainly divided into extra-cavity
passive methods and intra-cavity active methods. Hermie-Gaussian (HG) beams can be
converted into LG beams through a cylindrical lens mode converter outside the resonant
cavity [17], and fundamental Gaussian beams can be converted into LG beams through
computer-generated holograms [18], spatial light modulators [19], spiral phase plates [20],
optical wedges [21], metasurfaces [22], and other optical elements outside the resonant
cavity. However, these passive generation methods of LG beams have certain disadvan-
tages, such as high cost, low damage threshold, and generally poor quality of the beams
obtained. In recent years, many active generation methods have been used to suppress
the oscillation of fundamental Gaussian beams in the resonance of solid-state lasers to
achieve the direct output of LG mode lasers, such as end-pumping gain medium by the
annular beam [23–25], rotating gain medium induced off-axis pumping [26] and using
a spot-defect cavity mirror [27–29]. At present, LG beams are generally obtained based
on He-Ne Yb-, Nd-, and Er-doped gain medium, and the wavelengths of the LG beams
obtained are very limited, mainly 632, 1030, 1064, and 1645 nm. The vast majority of
the obtained LG beam wavelengths are output at a single laser wavelength. So far, only
A. J. Lee et al. realized LG01 mode dual-wavelength output (1063 nm fundamental beam
and 1173 nm Stokes beam) in a Nd:GdVO4 self-Raman laser based on a defective spot
on the output coupler [30]. Besides the one mentioned, there are no other reports on the
research of active methods to generate LG01 mode dual-wavelength lasers.

In this paper, we used the intracavity cascade pumping structure, which contains
two resonant cavities at 946 and 1030 nm. The two resonant cavities share a common
output mirror, and the 1030 nm resonant cavity is located within the 946 nm resonant cavity.
The 808 nm LD was used to end-pump the Nd:YAG crystal to generate a 946 nm laser,
then use it to directly pump the Yb:YAG crystal in the cavity to generate a 1030 nm laser,
and finally produce a 946/1030 nm dual-wavelength laser output coaxially. Compared to
schemes based on a single gain medium and nonlinear frequency conversion to generate
dual-wavelength lasers, intracavity cascade pumping schemes can effectively avoid the
problems of gain competition between spectral lines and strict phase matching [31,32]. By
creating a spot defect in the center of the output mirror to suppress the oscillation of the
fundamental Gaussian mode laser, a 946/1030 nm LG01 mode dual-wavelength vortex laser
was successfully achieved. After experimental optimization, the output power of the 946
and 1030 nm LG01 mode vortex lasers were 356 and 308 mW, respectively, when the pump
power was 40 W and the dual-wavelength vortex laser was output in single handedness.

2. Experiment Setup

The experimental setup of a 946/1030 nm LG01 mode dual-wavelength vortex laser
using a spot-defect mirror is demonstrated in Figure 1. The pump source is an 808 nm
fiber-coupled (0.22 NA, 200 µm core diameter) LD. The pump laser is converged to the
front surface of the Nd:YAG crystal using a coupling lens set, which consists of two lenses
with the same focal length. The Nd:YAG crystal (the diameter and length are 4 and 3 mm,
respectively, and the doping concentration is 1%) is coated with 808 nm and 946 nm
antireflection films on the front surface and a 946 nm antireflection film on the back surface.
The Yb:YAG crystals (the diameter and length are 4 and 2 mm, respectively, and the doping
concentration is 0.5%) are coated with 946 nm and 1030 nm antireflection films on both the
front and back surfaces. Although the absorption coefficient of the Yb:YAG crystal is low
for the 946 nm laser, the high intracavity pump power ensures the oscillation of the 1030 nm
laser. In addition, the lower doping concentration helps to reduce thermal effects and
losses from reabsorption in the quasi-three-level system. Both laser crystals are wrapped
with indium foil and installed in a water-cooled fixture made of purple copper, where the
temperature is controlled at 15 ◦C. The 946 nm resonant cavity consists of a total reflective
mirror M1 and a common output mirror M2, with a cavity length of 80 mm. The 1030 nm
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sub-resonant cavity consists of a total reflective mirror M3 and a common output mirror
M2, with a cavity length of 40 mm. M1 and M3 are both flat-concave mirrors with a radius
of curvature of 300 mm, and M2 is a flat-flat mirror. The M1 is coated with 808 and 1064 nm
antireflection films on the front and back surfaces, and a 946 nm high-reflection film on
the back surface. The 1064 nm antireflection film effectively suppresses the energy level
transition ( 4F3/2 → 4I11/2 ) at the 1064 nm laser. The M3 is coated with 946 nm antireflection
film on the front surface and 946 nm antireflection film and 1030 nm high-reflection film
on the back surface. The 355 nm ultraviolet laser is used to etch off the coating layers at
the center of the circle on the surface of the M2, forming a spot defect with a diameter of
about 170 µm. Since the spot defect can produce large losses in the output laser, an output
mirror with low transmission rates is used. The transmittance of M2 to 946 and 1030 nm
is 1.9% and 2.8%, respectively. The remaining 808 nm pump laser in the output laser is
absorbed by the RGB830 glass filter. The azimuthal symmetry inside the cavity is broken
by micro-adjusting the angles of Nd:YAG and Yb:YAG crystals [29,33], so that the vortex
laser of different handedness has differential losses to obtain the dual-wavelength vortex
laser with single handedness. The output laser is divided into 946 and 1030 nm LG01 mode
vortex lasers by dichroic mirror M4.
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Figure 1. The experimental setup of a 946/1030 nm LG01 mode dual-wavelength vortex laser using a
spot-defect mirror.

3. Experimental Results and Discussion

By moving the lateral position of the output mirror M2 so that the center of the spot
defect moves to the optical axis of the resonant cavity and then adjusting the front and
rear positions of the focusing mirror in the coupling lens set to regulate the pump laser in
the Nd:YAG crystal to match the LG01 mode vortex laser, an annular-shaped beam was
obtained in the whole pump range. The vortex laser of opposite handedness has the same
threshold pumping power in the resonant cavity with better symmetric characteristics, so
theoretically, the vortex laser of both handedness can be output from the resonant cavity
at the same time. In order to reduce the insertion loss caused by additional components,
the position of the laser crystals was micro-adjusted to make the dual-wavelength laser
output single handed. The obtained 946 and 1030 nm LG vortex lasers were converted to
HG lasers by a mode converter consisting of two cylindrical lenses of the same focal length
f (spacing of

√
2 f ), where the 946 nm LG vortex laser is adjusted to a direction parallel to

the optical axis by a reflector to facilitate the measurement. In addition, the 946 nm LG
vortex laser is reflected by the dichroic mirror M4 and re-reflected by the reflector, and its
handedness is adjusted back to the original handedness of the output from the M2. The
number of nodal lines in the HG beam and the topological charge of the vortex laser are
equal. The change in direction of the long axis of the HG laser is used to determine whether
the handedness of the vortex laser has changed. The number of node lines in the HG beams
at 946 and 1030 nm by the mode converter is 1, and the long-axis direction remains constant
throughout the pumping range. The results turn out that the number of topological charges
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for the dual-wavelength vortex laser were both 1, and the dual-wavelength vortex laser
was output in single handedness. The obtained spots of the 946 nm and 1030 nm LG01
mode vortex lasers and the spots of the HG01 mode laser at different pumping power states
are shown in Figure 2.
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The wavefront phases of the 946 and 1030 nm LG01 mode vortex lasers were measured
by a self-interferometric method based on a Michelson interferometer, and the optical
path diagram of the measurement setup is shown in Figure 3a [29]. The vortex beam is
first divided into a reflected beam and a transmitted beam through the beam splitter G1,
where the reflected beam is reflected by M1 and then passed through the beam splitter
G1 again; the transmitted beam is passed through the compensation plate G2, reflected by
the reflector M2, passed through the compensation plate G2 again, and then reflected by
the beam splitter G1, and finally the two beams enter the CCD in a non-co-linear way to
interfere. By adjusting the front and rear positions of the reflector M1 to make the optical
paths of the two channels equal. Using this device, the measured self-interference patterns
of the 946 and 1030 nm LG01 mode vortex lasers are shown in Figure 3b,c, respectively. The
measured interferograms both contain a pair of opposite Y-shaped stripes, indicating that
the generated dual-wavelength lasers both contain the phase of the wave front exp(iφ).
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The spectrum of the output laser was measured using a fiber-optic spectrometer (Stel-
larNet, BW-UVN-50), and the result is shown in Figure 4. As can be seen from the figure, the
central wavelengths of the dual-wavelength laser are 946.48 and 1029.56 nm, respectively.
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The relationship between the output power of the 946 and 1030 nm LG01 mode vortex
lasers and the incident pump power was further tested, and the results are shown in
Figure 5. When the pump power is 20.2 W, the 946 nm LG01 mode laser starts to output,
and when the pump light power is increased to 25.6 W, the 946 and 1030 nm LG01 mode
vortex lasers start to output simultaneously. The maximum output power of the 946 and
1030 nm LG01 mode vortex lasers is 356 and 308 mW, respectively, when the pump power
is 40 W. The total optical-optical conversion efficiency is 1.7%. Additionally, based on the
intracavity cascade pumping scheme, a combination of Nd:GdVO4 and Nd:YVO4 crystals
was used to generate 912 and 1064 nm TEM00 mode dual-wavelength lasers with threshold
pump powers of 15 and 17 W, respectively [34]. In contrast, the main reason for the high
threshold power of the dual-wavelength vortex laser in this paper can be attributed to the
fact that the output mirror with a point defect imposes some loss on the dual-wavelength
vortex laser operation.

Photonics 2023, 10, x FOR PEER REVIEW 5 of 9 
 

 

The spectrum of the output laser was measured using a fiber-optic spectrometer (Stel-
larNet, BW-UVN-50), and the result is shown in Figure 4. As can be seen from the figure, 
the central wavelengths of the dual-wavelength laser are 946.48 and 1029.56 nm, respec-
tively. 

 
Figure 4. The spectrogram of a dual-wavelength vortex laser. 

The relationship between the output power of the 946 and 1030 nm LG01 mode vortex 
lasers and the incident pump power was further tested, and the results are shown in Fig-
ure 5. When the pump power is 20.2 W, the 946 nm LG01 mode laser starts to output, and 
when the pump light power is increased to 25.6 W, the 946 and 1030 nm LG01 mode vortex 
lasers start to output simultaneously. The maximum output power of the 946 and 1030 
nm LG01 mode vortex lasers is 356 and 308 mW, respectively, when the pump power is 40 
W. The total optical-optical conversion efficiency is 1.7%. Additionally, based on the in-
tracavity cascade pumping scheme, a combination of Nd:GdVO4 and Nd:YVO4 crystals 
was used to generate 912 and 1064 nm TEM00 mode dual-wavelength lasers with threshold 
pump powers of 15 and 17 W, respectively [34]. In contrast, the main reason for the high 
threshold power of the dual-wavelength vortex laser in this paper can be attributed to the 
fact that the output mirror with a point defect imposes some loss on the dual-wavelength 
vortex laser operation. 

 
Figure 5. The relationship between the output power of the 946/1030 nm LG01 mode vortex laser and 
the incident pump power. 
Figure 5. The relationship between the output power of the 946/1030 nm LG01 mode vortex laser
and the incident pump power.

The power fluctuation of the dual-wavelength vortex laser was tested when the laser
output power was at its maximum, and the test results are shown in Figure 6a. The output
power of the 946 and 1030 nm LG01 mode vortex lasers was recorded simultaneously every
2 min for a total test time of 1 h. The power fluctuations of the 946 and 1030 nm LG01 mode
vortex lasers were 3.43% and 3.13%, respectively. The fluctuation of the total output power
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was 0.84%, which is smaller than the fluctuation of the 946 and 1030 nm LG01 mode vortex
lasers, respectively. In addition, we found the power fluctuation of the 808 nm pump laser
with time, which fluctuated by 0.37%, and the test result is shown in Figure 6b. When
the power of one wavelength of vortex laser increases, the power of the other wavelength
of vortex laser decreases, which makes the total output power fluctuate very little. This
phenomenon indicates that there is a weak competition between the output power of
dual-wavelength vortex lasers based on the intracavity cascade pumping structure.
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In addition, the variation of the beam quality factor of a dual-wavelength vortex laser
with pump power was measured, and the test result is shown in Figure 7a. The beam
quality factor M2 of the 946 nm and 1030 nm LG01 mode vortex light increased from 2.19
to 2.35 and 2.20 to 2.40 with increasing pump power, respectively. Due to the increase in
pump power, the increase in thermal effect is one of the main reasons for the increase in
beam quality factor M2 of dual-wavelength vortex laser. The test result of the beam quality
factor M2 of the dual-wavelength vortex laser at the maximum output power is shown in
Figure 7b. The beam quality factors M2 of the 946 and 1030 nm LG01 mode vortex lasers
were 2.35 and 2.40, respectively, and the theoretical value of the beam quality factor M2 of
the LG01 mode vortex laser is 2.
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4. Conclusions

In this study, a 946/1030 nm LG01 mode dual-wavelength vortex laser was demon-
strated. Based on the intracavity cascade pumping structure, the 808 nm LD was used
to end-pump the Nd:YAG crystal to generate the 946 nm laser, and then it was used to
directly pump the Yb:YAG crystal in the cavity to generate the 1030 nm laser, and finally
the 946/1030 nm dual-wavelength laser was obtained. This structure avoids competition
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between the two output spectral lines. The precision etching technique was applied to
create a spot defect in the center of the output mirror, which suppresses the oscillation
of the fundamental Gaussian mode laser and ensures the oscillation of the LG01 mode
vortex laser. In addition, the position of the laser crystals was fine-adjusted to produce
a sufficient loss difference between the vortex lasers with opposite handedness so that a
dual-wavelength vortex laser was output in single handedness. When the pump power
was 40 W, the output power of the 946 and 1030 nm LG01 mode vortex lasers was 356
and 308 mW, respectively, and the total optical-optical conversion efficiency was 1.7%.
The power fluctuations of the 946 and 1030 nm LG01 mode vortex lasers at the maximum
output power were 3.43% and 3.13% in 1 h, respectively, and the fluctuation of the total
output power was 0.84%. The fluctuation of the total output power is smaller than that of
the 946 and 1030 nm LG01 mode vortex lasers, indicating that there is some competition
between the output power of the dual-wavelength vortex lasers. The beam quality factors
M2 were 2.35 and 2.40 for the 946 and 1030 nm LG01 mode vortex lasers at maximum
output power, respectively. Both the 946 and 1030 nm interferograms measured by the
self-interference method contain a pair of opposite Y-shaped stripes, indicating that the
generated dual-wavelength lasers both contain the wavefront phase exp(iφ). Compared
with the fundamental Gaussian laser, the vortex laser can significantly reduce the beam
diffusion caused by atmospheric turbulence. Therefore, by replacing the conventional
fundamental Gaussian mode dual-wavelength laser, the dual-wavelength vortex laser will
significantly improve performance in remote sensing, topography, and other fields. In
addition, the dual-wavelength vortex laser developed in this paper can be used for further
intracavity sum-frequency experiments to obtain the vortex laser in the blue wavelength
band. As vortex lasers are put into use in an increasingly wide range of applications, it is
important to improve the wavelength versatility of vortex laser sources.
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