Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror
Abstract
:1. Introduction
2. Experiment Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Hill, C.A.; Tapster, P.R.; Vaughan, J.M. Laser modes with helical wave fronts. Phys. Rev. A 1994, 49, 3119–3122. [Google Scholar] [CrossRef] [PubMed]
- Čižmár, T.; Brzobohatý, O.; Dholakia, K.; Zemánek, P. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett. 2011, 8, 50–56. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Perez-Garcia, B.; Francis, J.; McLaren, M.; Hernandez-Aranda, R.I.; Forbes, A.; Konrad, T. Quantum computation with classical light: The Deutsch Algorithm. Phys. Lett. A 2015, 379, 1675–1680. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Huang, H.; Xie, G.D.; Yan, Y.; Ahmed, N.; Ren, Y.X.; Yue, Y.; Rogawski, D.; Willner, M.J.; Erkmen, B.I.; Birnbaum, K.M.; et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 2014, 39, 197–200. [Google Scholar] [CrossRef]
- Syubaev, S.; Zhizhchenko, A.; Kuchmizhak, A.; Porfirev, A.; Pustovalov, E.; Vitrik, O.; Kulchin, Y.; Khonina, S.; Kudryashov, S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express 2017, 25, 10214–10223. [Google Scholar] [CrossRef]
- Polyakov, O.P.; Gonoskov, I.A.; Stepanyuk, V.S.; Gross, E.K.U. Generation of magnetic skyrmions by focused vortex laser pulses. J. Appl. Phys. 2020, 127, 073904. [Google Scholar] [CrossRef]
- Wang, B.; Tanksalvala, M.; Zhang, Z.; Esashi, Y.; Jenkins, N.W.; Murnane, M.M.; Kaptern, H.C.; Liao, C.-T. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 2020, 29, 3342–3358. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Brooks, N.J.; Johnsen, P.C.; Jenkins, N.W.; Esashi, Y.; Binnie, I.; Tanksalvala, M.; Kapteyn, H.C.; Murnane, M.M. High-fidelity ptychographic imaging of highly periodic structures enabled by vortex high harmonic beams. arXiv 2023, arXiv:2301.05563. [Google Scholar]
- Li, Z.; Liu, T.; Ren, Y.; Qiu, S.; Wang, C.; Wang, H. Direction-sensitive detection of spinning object using dual-frequency vortex light. Opt. Express 2021, 29, 7453–7463. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.W.; Li, Y.L.; Hu, W.W.; Chen, Z.W.; Sun, X.T. Intracavity cascade pumped 493.1nm blue laser. Optik 2020, 219, 165126. [Google Scholar] [CrossRef]
- Courtial, J.; Padgett, M.J. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt. Commun. 1999, 159, 13–18. [Google Scholar] [CrossRef]
- Heckenberg, N.R.; McDuff, R.; Smith, C.P.; White, A.G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef]
- Matsumoto, N.; Ando, T.; Inoue, T.; Ohtake, Y.; Fukuchi, N.; Hara, T. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A 2008, 25, 1642–1651. [Google Scholar] [CrossRef]
- Xin, J.; Dai, K.; Zhong, L.; Na, Q.; Gao, C. Generation of optical vortices by using spiral phase plates made of polarization dependent devices. Opt. Lett. 2014, 39, 1984–1987. [Google Scholar] [CrossRef]
- Shvedov, V.G.; Izdebskaya, Y.V.; Alekseev, A.N.; Volyar, A.V. The formation of optical vortices in the course of light diffraction on a dielectric wedge. Tech. Phys. Lett. 2002, 28, 256–259. [Google Scholar] [CrossRef]
- Yang, Y.M.; Wang, W.Y.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Liu, Q.Y.; Zhou, W.; Shen, D.Y. ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity. Opt. Express 2016, 24, 15596–15602. [Google Scholar] [CrossRef]
- Li, G.Y.; Xia, K.G.; Wang, Z.Y.; Shen, H.; Shirakawa, A.; Ueda, K.-I.; Li, J.L. Conical refraction, for annular pumping of an efficient vortex Nd:YAG laser. Laser Phys. Lett. 2017, 14, 075001. [Google Scholar] [CrossRef]
- He, H.S.; Chen, Z.; Li, H.B.; Dong, J. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser. Laser Phys. 2018, 28, 055802. [Google Scholar] [CrossRef]
- Huang, X.X.; Xu, B.; Cui, S.W.; Xu, H.Y.; Cai, Z.P.; Chen, L.X. Direct Generation of Vortex Laser by Rotating Induced Off-Axis Pumping. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1601606. [Google Scholar] [CrossRef]
- Uesugi, Y.; Sato, S.; Kozawa, Y. Direct generation of the lowest-order vortex beam using a spot defect mirror in the ultraviolet region. Opt. Lett. 2020, 45, 2115–2118. [Google Scholar] [CrossRef]
- Kano, K.; Kozawa, Y.; Sato, S. Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror. Int. J. Opt. 2011, 2012, 359141. [Google Scholar] [CrossRef]
- Qiao, Z.; Xie, G.Q.; Wu, Y.H.; Yuan, P.; Ma, J.G.; Qiao, L.J.; Fan, D.Y. Generating High-Charge Optical Vortices Directly from Laser Up to 288th Order. Laser Photon. Rev. 2018, 12, 1800019. [Google Scholar] [CrossRef]
- Lee, A.J.; Zhang, C.Y.; Omatsu, T.; Pask, H.M. An intracavity, frequency-doubled self-Raman vortex laser. Opt. Express 2014, 22, 5400–5409. [Google Scholar] [CrossRef]
- Hu, W.W.; Li, Y.L.; Hu, C.W.; Gu, X.K.; Liu, H.X.; Zhang, Y.P.; Zhang, Y.M. Intra-cavity cascaded pumped 912nm/1030nm dual wavelength laser output. Opt. Commun. 2019, 452, 440–444. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Xiao, H.D.; Yu, Y.J.; Jin, G.Y. Construction of 879 nm direct intra-cavity pumped dual-wavelength laser operating at 912 nm and 1064 nm. Opt. Laser Technol. 2019, 115, 477–480. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.; Ito, I.; Kobayashi, Y. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror. OSA Continuum. 2019, 2, 523–530. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Yu, Y.J.; Wang, C.; Zhang, X.M. Output characteristics of no gain competition 912 nm and 1064 nm dual-wavelength lasers. Opt. Laser Technol. 2019, 115, 125–128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, Y.; Zhu, X.; Wang, C.; Yang, C. Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics 2023, 10, 554. https://doi.org/10.3390/photonics10050554
Yang Y, Li Y, Zhu X, Wang C, Yang C. Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics. 2023; 10(5):554. https://doi.org/10.3390/photonics10050554
Chicago/Turabian StyleYang, Yashuai, Yongliang Li, Xinyi Zhu, Chi Wang, and Chao Yang. 2023. "Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror" Photonics 10, no. 5: 554. https://doi.org/10.3390/photonics10050554
APA StyleYang, Y., Li, Y., Zhu, X., Wang, C., & Yang, C. (2023). Intra-Cavity Cascaded Pumped 946/1030 nm Dual-Wavelength Vortex Laser Using a Spot-Defect Mirror. Photonics, 10(5), 554. https://doi.org/10.3390/photonics10050554