The Effect of GaSb Substrate Oxidation Layer on InAs/GaSb Type II Superlattice
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Analysis of Oxidation Behavior
3.2. Oxide Layer
3.3. Epitaxial Layer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clément, Q.; Melkonian, J.-M.; Dherbecourt, J.-B.; Raybaut, M.; Grisard, A.; Lallier, E.; Gérard, B.; Faure, B.; Souhaité, G.; Godard, A. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing. Opt. Lett. 2015, 40, 2676–2679. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Han, W.; Gao, Z.; Di, D. The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Q. J. Roy. Meteor. Soc. 2020, 146, 1459–1476. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; da Costa, A.N.; Jemec, G.B.E.; Trebing, D. Long-Wave Medical Infrared Thermography: A Clinical Biomarker of Inflammation in Hidradenitis Suppurativa/Acne Inversa. Dermatology 2019, 235, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.J.; Jo, J.H.; Ryu, J.M. Optical design of a reflecting omnidirectional vision system for long-wavelength infrared light. Korean J. Opt. Photonics 2019, 30, 37–47. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 2017, 4, 031304. [Google Scholar] [CrossRef]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.; Myers, S.; Kim, H.; Plis, E.; Gautam, N.; Lee, S.J.; Noh, S.K.; Dawson, L.R.; Krishna, S. Long-wave InAs/GaSb superlattice detectors based on nBn and pin designs. IEEE J. Quantum Electron. 2010, 46, 959–964. [Google Scholar] [CrossRef]
- Lee, H.-J.; Jang, A.; Kim, Y.H.; Jung, H.; Bidenko, P.; Kim, S.; Kim, M.; Nah, J. Comparative advantages of a type-II superlattice barrier over an AlGaSb barrier for enhanced performance of InAs/GaSb LWIR nBn photodetectors. Opt. Lett. 2021, 46, 3877–3880. [Google Scholar] [CrossRef]
- Jasik, A.; Sankowska, I.; Czuba, K.; Ratajczak, J.; Kozłowski, P.; Wawro, A.; Żak, D.; Piskorski, K. Strain-balanced InAs/GaSb superlattices used for the detection of VLWIR radiation. Infrared Phys. Technol. 2022, 122, 104109. [Google Scholar] [CrossRef]
- Su, D.-H.; Xu, Y.; Wang, W.-X.; Song, G.-F. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio. Chin. Phys. Lett. 2020, 37, 037301. [Google Scholar] [CrossRef]
- Lee, H.; Jung, H.; Jang, A.; Kim, J.; Ko, S.; Kim, Y.; Nah, J. Dark current improvement due to dry-etch process in InAs/GaSb type-II superlattice LWIR photodetector with nBn structure. Infrared Phys. Technol. 2018, 94, 161–164. [Google Scholar] [CrossRef]
- Bouschet, M.; Zavala-Moran, U.; Arounassalame, V.; Alchaar, R.; Bataillon, C.; Ribet-Mohamed, I.; de Anda-Salazar, F.; Perez, J.-P.; Péré-Laperne, N.; Christol, P. Influence of Pixel Etching on Electrical and Electro-Optical Performances of a Ga-Free InAs/InAsSb T2SL Barrier Photodetector for Mid-Wave Infrared Imaging. Photonics 2021, 8, 194. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Cellek, O.O.; Ding, D.; Shen, X.-M.; Lin, Z.-Y.; Steenbergen, E.H.; Fan, J.; He, Z.-Y.; Lu, J.; et al. Impact of substrate temperature on the structural and optical properties of strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 071903. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, R.K.; Kumari, S.; Pandey, A.; Dalal, S.; Sankarasubramanian, R.; Channagiri, S.; Jangir, S.K.; Raman, R.; Srinivasan, T.; et al. Interface engineered MBE grown InAs/GaSb based type-II superlattice heterostructures. J. Alloys Compd. 2021, 889, 161692. [Google Scholar] [CrossRef]
- Plis, E.A. InAs/GaSb Type-II Superlattice Detectors. Adv. Electron. 2014, 2014, 246769. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; Hao, R.; Guo, J.; Wang, Y.; Aierken, A.; Zhuang, Y.; Chang, F.; Cui, S.; Gu, K.; et al. MBE growth of high quality InAsSb thin films on GaAs substrates with GaSb as buffer layers. J. Cryst. Growth 2020, 542, 125688. [Google Scholar] [CrossRef]
- Lin, F.-Q.; Li, N.; Zhou, W.-G.; Jiang, J.-K.; Chang, F.-R.; Li, Y.; Cui, S.-N.; Chen, W.-Q.; Jiang, D.-W.; Hao, H.-Y.; et al. Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy. Chin. Phys. B 2022, 31, 098504. [Google Scholar] [CrossRef]
- More, V.M.; Kim, Y.; Jeon, J.; Shin, J.C.; Lee, S.J. Dual-band unipolar barrier infrared photodetector based on InGaAsSb bulk and type-II InAs/GaSb superlattice absorbers. J. Alloys Compd. 2021, 868, 159195. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Wang, X.; Wu, J.; Huang, L. Interface investigation of InAs/GaSb type II superlattice for long wavelength infrared photodetectors. Infrared Phys. Technol. 2021, 113, 103573. [Google Scholar] [CrossRef]
- Mizokawa, Y.; Komoda, O.; Miyase, S. Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy. Thin Solid Films 1988, 156, 127–143. [Google Scholar] [CrossRef]
- Lavery, P.S.; Oldham, C.E.; Ghisalberti, M. The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol. Process. 2001, 15, 2435–2451. [Google Scholar] [CrossRef]
- Pankratov, E.L. Dynamics of δ-dopant redistribution during heterostructure growth. Eur. Phys. J. B 2007, 57, 251–256. [Google Scholar] [CrossRef]
- Titze, T.; Lauerer, A.; Heinke, L.; Chmelik, C.; Zimmermann, N.E.R.; Keil, F.J.; Ruthven, D.M.; Kärger, J. Transport in nanoporous materials including MOFs: The applicability of Fick’s laws. Angew. Chem. Int. Ed. 2015, 54, 14580–14583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.W., Jr.; Erickson, K.L.; Belton, D.N.; Springer, R.W.; Taylor, T.N.; Beery, J.G. Low temperature diffusion of oxygen in titanium and titanium oxide films. Appl. Surf. Sci. 1988, 35, 137–152. [Google Scholar] [CrossRef]
- Lou, V.L.K.; Mitchell, T.E.; Heuer, A.H. Graphical Displays of the Thermodynamics of High-Temperature Gas-Solid Reactions and Their Application to Oxidation of Metals and Evaporation of Oxide. J. Am. Ceram. Soc. 1985, 68, 49–58. [Google Scholar] [CrossRef]
- Schirm, K.; Soukiassian, P.; Mangat, P.; Hurych, Z.; Soonckindt, L.; Bonnet, J. Role of defects in the passivation of III–V semiconductor surfaces modified by alkali metals: O2/Rb/p- and n-type GaSb(110). J. Vac. Sci. Technol. B 1992, 10, 1867–1873. [Google Scholar] [CrossRef]
- Schwartz, G. Analysis of native oxide films and oxide-substrate reactions on III–V semiconductors using thermochemical phase diagrams. Thin Solid Films 1983, 103, 3–16. [Google Scholar] [CrossRef]
- Kitamura, N. Characterization of GaSb anodic oxide grown in a solution of 3% tartaric acid and ethylene glycol using XPS and ellipsometry. Mater. Lett. 1996, 29, 77–79. [Google Scholar] [CrossRef]
- Cheng, B.; Samulski, E.T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 2001, 11, 2901–2902. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Wang, S.-Y.; Li, J.; Zheng, Y.-X.; Zhang, R.-J.; Zhou, P.; Yang, Y.-M.; Chen, L.-Y. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films 2004, 455–456, 438–442. [Google Scholar] [CrossRef]
- Luna, E.; Satpati, B.; Rodriguez, J.; Baranov, A.; Tournié, E. Trampert, Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy. Appl. Phys. Lett. 2010, 96, 021904. [Google Scholar] [CrossRef] [Green Version]
- Sankowska, I.; Jasik, A.; Czuba, K.; Ratajczak, J.; Kozłowski, P.; Wzorek, M. A Study of Defects in InAs/GaSb Type-II Superlattices Using High-Resolution Reciprocal Space Mapping. Materials 2021, 14, 4940. [Google Scholar] [CrossRef] [PubMed]
- Delmas, M.; Debnath, M.; Liang, B.; Huffaker, D. Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors. Infrared Phys. Technol. 2018, 94, 286–290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhu, L.; Gong, R.; Liu, B.; Gong, M.; Feng, Q.; Chen, Z.; Zhang, D.; Zheng, X.; Feng, Y.; et al. The Effect of GaSb Substrate Oxidation Layer on InAs/GaSb Type II Superlattice. Photonics 2023, 10, 345. https://doi.org/10.3390/photonics10030345
Liu J, Zhu L, Gong R, Liu B, Gong M, Feng Q, Chen Z, Zhang D, Zheng X, Feng Y, et al. The Effect of GaSb Substrate Oxidation Layer on InAs/GaSb Type II Superlattice. Photonics. 2023; 10(3):345. https://doi.org/10.3390/photonics10030345
Chicago/Turabian StyleLiu, Jiabo, Lianqing Zhu, Ruixin Gong, Bingfeng Liu, Mingliang Gong, Qingsong Feng, Zhiping Chen, Dongliang Zhang, Xiantong Zheng, Yulin Feng, and et al. 2023. "The Effect of GaSb Substrate Oxidation Layer on InAs/GaSb Type II Superlattice" Photonics 10, no. 3: 345. https://doi.org/10.3390/photonics10030345