Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer
Abstract
:1. Introduction
2. Design and Simulation
3. Fabrication and Measurement Setup
4. Results and Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heck, M.J.; Bauters, J.F.; Davenport, M.L.; Doylend, J.K.; Jain, S.; Kurczveil, G.; Srinivasan, S.; Tang, Y.; Bowers, J.E. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 2012, 19, 6100117. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.U.; Xing, Y.; Ye, Y.; Bogaerts, W. Photonic integrated circuit design in a foundry+ fabless ecosystem. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8201014. [Google Scholar] [CrossRef]
- Augustin, L.M.; Santos, R.; den Haan, E.; Kleijn, S.; Thijs, P.J.; Latkowski, S.; Zhao, D.; Yao, W.; Bolk, J.; Ambrosius, H. InP-based generic foundry platform for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 6100210. [Google Scholar] [CrossRef]
- Ullah, F.; Deng, N.; Qiu, F. Recent progress in electro-optic polymer for ultra-fast communication. PhotoniX 2021, 2, 13. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Z.; Wu, L.; Zhang, Z. Material contact sensor with 3D coupled waveguides. Opt. Express 2021, 29, 39055–39064. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Sui, X.; Chen, Q.; Gu, G.; Wang, L.; Li, S. Research progress in optical neural networks: Theory, applications and developments. PhotoniX 2021, 2, 5. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Li, J.; Fang, T.; Dong, X. The challenges of modern computing and new opportunities for optics. PhotoniX 2021, 2, 20. [Google Scholar] [CrossRef]
- Fridlander, J.; Sang, F.; Rosborough, V.; Gambini, F.; Šuran-Brunelli, S.T.; Chen, J.R.; Numata, K.; Stephen, M.; Coldren, L.A.; Klamkin, J. Dual Laser Indium Phosphide Photonic Integrated Circuit for Integrated Path Differential Absorption Lidar. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 6100208. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
- Shibata, T.; Okuno, M.; Goh, T.; Watanabe, T.; Yasu, M.; Itoh, M.; Ishii, M.; Hibino, Y.; Sugita, A.; Himeno, A. Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits. IEEE Photonics Technol. Lett. 2003, 15, 1300–1302. [Google Scholar] [CrossRef]
- Al-Hetar, A.M.; Mohammad, A.B.; Supa’At, A.S.M.; Shamsan, Z.A. MMI-MZI polymer thermo-optic switch with a high refractive index contrast. J. Light. Technol. 2010, 29, 171–178. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Marocco, G.; Di Benedetto, A.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- Ibrahim, T.A.; Cao, W.; Kim, Y.; Li, J.; Goldhar, J.; Ho, P.-T.; Lee, C.H. All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photonics Technol. Lett. 2003, 15, 36–38. [Google Scholar] [CrossRef]
- Gan, F.; Barwicz, T.; Popovic, M.; Dahlem, M.; Holzwarth, C.; Rakich, P.; Smith, H.; Ippen, E.; Kartner, F. Maximizing the thermo-optic tuning range of silicon photonic structures. In Proceedings of the 2007 Photonics in Switching, San Francisco, CA, USA, 19–22 August 2007; pp. 67–68. [Google Scholar]
- El-Bawab, T.S. Optical Switching; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Dai, D.; Wang, Z.; Bowers, J.E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Opt. Lett. 2011, 36, 2590–2592. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, Z. Polarization beam splitter using a binary blazed grating coupler. Opt. Lett. 2007, 32, 1662–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Tu, Z.; Yi, H.; Li, Y.; Wang, X.; Hu, W. High extinction ratio polarization beam splitter with multimode interference coupler on SOI. Opt. Commun. 2013, 307, 46–49. [Google Scholar] [CrossRef]
- Dai, D.; Wang, Z.; Peters, J.; Bowers, J.E. Compact polarization beam splitter using an asymmetrical Mach–Zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photonics Technol. Lett. 2012, 24, 673–675. [Google Scholar] [CrossRef]
- Soldano, L.; De Vreede, A.; Smit, M.; Verbeek, B.; Metaal, E.; Green, F. Mach-Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photonics Technol. Lett. 1994, 6, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Wang, J.; Qi, M.; Xuan, Y.; Huang, H.; Li, Y.; Li, M.; Chen, X.; Jia, Q.; Sheng, Z.; Wu, A. Ultrabroadband silicon-on-insulator polarization beam splitter based on cascaded mode-sorting asymmetric Y-junctions. IEEE Photonics J. 2014, 6, 2700608. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Kumar, A.; Patel, D.; El-Fiky, E.; Xing, Z.; Li, R.; Plant, D.V. Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI. IEEE Photonics Technol. Lett. 2018, 30, 403–406. [Google Scholar] [CrossRef]
- Sun, X.; Alam, M.; Aitchison, J.; Mojahedi, M. Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure. Opt. Lett. 2016, 41, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Guerber, S.; Alonso-Ramos, C.; Benedikovic, D.; Durán-Valdeiglesias, E.; Le Roux, X.; Vulliet, N.; Cassan, E.; Marris-Morini, D.; Baudot, C.; Boeuf, F. Broadband polarization beam splitter on a silicon nitride platform for O-band operation. IEEE Photonics Technol. Lett. 2018, 30, 1679–1682. [Google Scholar] [CrossRef]
- Abadía, N.; Dai, X.; Lu, Q.; Guo, W.-H.; Patel, D.; Plant, D.V.; Donegan, J.F. Highly fabrication tolerant InP based polarization beam splitter based on pin structure. Opt. Express 2017, 25, 10070–10077. [Google Scholar] [CrossRef]
- Han, L.; Liang, S.; Zhu, H.; Zhang, C.; Wang, W. A high extinction ratio polarization beam splitter with MMI couplers on InP substrate. IEEE Photonics Technol. Lett. 2015, 27, 782–785. [Google Scholar] [CrossRef]
- Wang, N.; Yan, W.; Qu, Y.; Ma, S.; Li, S.Z.; Qiu, M. Intelligent designs in nanophotonics: From optimization towards inverse creation. PhotoniX 2021, 2, 22. [Google Scholar] [CrossRef]
- Li, C.; Zhang, M.; Xu, H.; Tan, Y.; Shi, Y.; Dai, D. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX 2021, 2, 11. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon nitride in silicon photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Elshaari, A.W.; Zadeh, I.E.; Jöns, K.D.; Zwiller, V. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J. 2016, 8, 2701009. [Google Scholar] [CrossRef]
- Oh, M.-C.; Kim, K.-J.; Chu, W.-S.; Kim, J.-W.; Seo, J.-K.; Noh, Y.-O.; Lee, H.-J. Integrated photonic devices incorporating low-loss fluorinated polymer materials. Polymers 2011, 3, 975–997. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Keil, N. Thermo-optic devices on polymer platform. Opt. Commun. 2016, 362, 101–114. [Google Scholar] [CrossRef]
- Sato, H.; Miura, H.; Qiu, F.; Spring, A.M.; Kashino, T.; Kikuchi, T.; Ozawa, M.; Nawata, H.; Odoi, K.; Yokoyama, S. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation. Opt. Express 2017, 25, 768–775. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; de Felipe, D.; Liu, A.; Keil, N.; Grote, N. Polymer embedded silicon nitride thermally tunable Bragg grating filters. Appl. Phys. Lett. 2013, 102, 181105. [Google Scholar] [CrossRef]
- Chen, T.; Dang, Z.; Liu, Z.; Ding, Z.; Yang, Z.; Zhang, X.; Jiang, X.; Zhang, Z. Coupling-Controlled Multiport Thermo-Optic Switch Using Polymer Waveguide Array. IEEE Photonics Technol. Lett. 2021, 33, 1135–1138. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Keil, N.; Grote, N. Thermally tunable silicon nitride sampled gratings in polymer. IEEE Photonics Technol. Lett. 2013, 25, 1734–1736. [Google Scholar] [CrossRef]
- Zhang, Z.; Felipe, D.; Katopodis, V.; Groumas, P.; Kouloumentas, C.; Avramopoulos, H.; Dupuy, J.-Y.; Konczykowska, A.; Dede, A.; Beretta, A. Hybrid photonic integration on a polymer platform. Photonics 2015, 2, 1005–1026. [Google Scholar] [CrossRef]
- Chen, T.; Dang, Z.; Ding, Z.; Liu, Z.; Zhang, Z. Multibit NOT logic gate enabled by a function programmable optical waveguide. Opt. Lett. 2022, 47, 3519–3522. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhao, G.; Chen, Q.; Lu, Q.; Donegan, J.F.; Guo, W. High-performance InP-based Mach–Zehnder polarization beam splitter with a 19 dB extinction ratio across C-band. Opt. Lett. 2019, 44, 4299–4302. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Chen, T.; Ding, Z.; Liu, Z.; Zhang, X.; Jiang, X.; Zhang, Z. Multiport all-logic optical switch based on thermally altered light paths in a multimode waveguide. Opt. Lett. 2021, 46, 3025–3028. [Google Scholar] [CrossRef]
- De Felipe, D.; Zhang, Z.; Brinker, W.; Kleinert, M.; Novo, A.M.; Zawadzki, C.; Moehrle, M.; Keil, N. Polymer-based external cavity lasers: Tuning efficiency, reliability, and polarization diversity. IEEE Photonics Technol. Lett. 2014, 26, 1391–1394. [Google Scholar] [CrossRef]
- Bucio, T.D.; Lacava, C.; Clementi, M.; Faneca, J.; Skandalos, I.; Baldycheva, A.; Galli, M.; Debnath, K.; Petropoulos, P.; Gardes, F. Silicon nitride photonics for the near-infrared. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 8200613. [Google Scholar] [CrossRef] [Green Version]
Function | Output | ψ | ΔφTE-X2 |
---|---|---|---|
I-Beam Splitter (BS) | Port A and Port B | kπ, k∈Z | pπ, p∈Z |
II-Path Switch (PS) | Port A | 2kπ, k∈Z | −π/2 + 2pπ, p∈Z |
Port B | 2kπ, k∈Z | π/2 + 2pπ, p∈Z | |
III-Polarization Beam Splitter (PBS) | TE → Port A TM → Port B | π + 2kπ, k∈Z | −π/2 + 2pπ, p∈Z |
TM → Port A TE → Port B | π + 2kπ, k∈Z | π/2 + 2pπ, p∈Z |
Function | Heat Powers (mW) | Output | Simulation Results | |
---|---|---|---|---|
TE Polarization | TM Polarization | |||
I-BS | ψ = kπ, k∈Z ΔφTE-X2 = pπ, p∈Z | |||
H1 = 0, H2 = 0, H3 = 0, H4 = 0 | ||||
II-PS | ψ = 2kπ, k∈Z ΔφTE-X2 = −π/2 + 2pπ, p∈Z | |||
H1 = 0, H2 = 0, H3 = 0, H4 = 2.4 | ||||
ψ = 2kπ, k∈Z ΔφTE-X2 = π/2 + 2pπ, p∈Z | ||||
H1 = 2.4, H2 = 0, H3 = 0, H4 = 0 | ||||
III-PBS | ψ = π + 2kπ, k∈Z ΔφTE-X2 = −π/2 + 2pπ, p∈Z | |||
H1 = 0, H2 = 5, H3 = 16.5, H4 = 3.8 | ||||
ψ = π + 2kπ, k∈Z ΔφTE-X2 = π/2 + 2pπ, p∈Z | ||||
H1 = 3.8, H2 = 16.5, H3 = 5, H4 = 0 |
Function | Output | H2 (mW) | H3 (mW) | H4 (mW) |
---|---|---|---|---|
I-BS | Port A and Port B | 40.7 | 12.2 | 5.2 |
II-PS | Port A | 41.6 | 10.0 | 5.3 |
Port B | 14.5 | 42.9 | 3.4 | |
III-PBS | TE → Port A TM → Port B | 18.6 | 8.8 | 3.9 |
TM → Port A TE → Port B | 9.8 | 10.4 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Ding, Z.; Dang, Z.; Jiang, X.; Zhang, Z. Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer. Photonics 2023, 10, 277. https://doi.org/10.3390/photonics10030277
Chen T, Ding Z, Dang Z, Jiang X, Zhang Z. Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer. Photonics. 2023; 10(3):277. https://doi.org/10.3390/photonics10030277
Chicago/Turabian StyleChen, Tao, Zhenming Ding, Zhangqi Dang, Xinhong Jiang, and Ziyang Zhang. 2023. "Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer" Photonics 10, no. 3: 277. https://doi.org/10.3390/photonics10030277
APA StyleChen, T., Ding, Z., Dang, Z., Jiang, X., & Zhang, Z. (2023). Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer. Photonics, 10(3), 277. https://doi.org/10.3390/photonics10030277