Current Applications and New Perspectives in Optical Coherence Tomography (OCT) Coronary Atherosclerotic Plaque Assessment: From PCI Optimization to Pharmacological Treatment Guidance
Abstract
:1. Introduction
2. Basics of Coronary Optical Coherence Tomography (OCT)
2.1. Physical Principles
2.2. Image Acquisition
2.3. Basic Interpretation
3. OCT Guidance to Optimize Percutaneous Coronary Intervention (PCI): Current Evidence and Knowledge Gaps
3.1. Lesion Assessment
3.2. Stent Implantation
3.3. Follow-Up Stent Evaluation (Figure 2)
4. Specific Clinical Settings of OCT-Guided PCI
4.1. Complex Bifurcation Lesions
4.2. Left Main (LM) Disease
4.3. Spontaneous Coronary Artery Dissections (SCAD)
4.4. Myocardial Infarction with Non-Obstructive Coronary Artery Disease (MINOCA)
5. Potential Impact of OCT Assessment on Pharmacological Treatment
5.1. Statins
5.2. PCSK9 Inhibitors
5.3. Antidiabetic Drugs
5.4. Colchicine
Study | Year | Study Design | Follow-Up (Months) | Study Drug | Clinical Setting | Effects on Atherosclerotic Plaque |
---|---|---|---|---|---|---|
Takarada et al. [92] | 2009 | Non-RCT | 9 | Statins | AMI | Increase in FCT |
Nishiguchi et al. [93] | 2018 | RCT | 9 | Pitavastatin | AMI | Increase in FCT |
Komukai et al. [95] | 2014 | RCT | 12 | Atorvastatin | Unstable Angina |
|
Hou et al. [94] | 2016 | RCT | 12 | Atorvastatin | CAD |
|
Hong et al. [99] | 2015 | RCT | 9 | Pioglitazone | CAD | Decreased neointimal hyperplasia |
Yamamoto et al. [100] | 2021 | RCT | 6 | Vildagliptin | CAD |
|
Hashikata et al. [101] | 2020 | RCT | 12 | Empagliflozin | CAD | Decreased neointimal hyperplasia |
Räber et al. [98] | 2022 | RCT | 13 | Alirocumab | AMI |
|
Nicholls et al. [97] | 2022 | RCT | 13 | Evolocumab | AMI |
|
Montarello et al. [107] | 2021 | RCT | 18 | Colchicine | AMI | Ongoing |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Tarantini, G.; Fovino, L.N.; Varbella, F.; Trabattoni, D.; Caramanno, G.; Trani, C.; De Cesare, N.; Esposito, G.; Montorfano, M.; Musto, C.; et al. A large, prospective, multicentre study of left main PCI using a latest-generation zotarolimus-eluting stent: The ROLEX study. EuroIntervention 2022, EIJ-D-22-00454. [Google Scholar] [CrossRef]
- Ali, Z.A.; Karimi Galougahi, K.; Mintz, G.S.; Maehara, A.; Shlofmitz, R.A.; Mattesini, A. Intracoronary optical coherence tomography: State of the art and future directions. EuroIntervention 2021, 17, e105–e123. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Zarnegar, A.; Corradetti, G.; Singh, S.R.; Chhablani, J. Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders. J. Clin. Med. 2022, 11, 5139. [Google Scholar] [CrossRef]
- Fujimoto, J.G.; Boppart, S.A.; Tearney, G.J.; Bouma, B.E.; Pitris, C.; Brezinski, M.E. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 1999, 82, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Yabushita, H.; Bouma, B.E.; Houser, S.L.; Aretz, H.T.; Jang, I.K.; Schlendorf, K.H.; Kauffman, C.R.; Shishkov, M.; Kang, D.H.; Halpern, E.F.; et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002, 106, 1640–1645. [Google Scholar] [CrossRef]
- Jang, I.K.; Tearney, G.; Bouma, B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: Comparison with intravascular ultrasound. Circulation 2001, 104, 2754. [Google Scholar] [CrossRef]
- Prati, F.; Regar, E.; Mintz, G.S.; Arbustini, E.; Di Mario, C.; Jang, I.K.; Akasaka, T.; Costa, M.; Guagliumi, G.; Grube, E.; et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 2010, 31, 401–415. [Google Scholar] [CrossRef]
- Cogliati, A.; Canavesi, C.; Hayes, A.; Tankam, P.; Duma, V.F.; Santhanam, A.; Thompson, K.P.; Rolland, J.P. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy. Opt. Express 2016, 24, 13365–13374. [Google Scholar] [CrossRef]
- Otsuka, F.; Joner, M.; Prati, F.; Virmani, R.; Narula, J. Clinical classification of plaque morphology in coronary disease. Nat. Rev. Cardiol. 2014, 11, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.K.; Bouma, B.E.; Kang, D.H.; Park, S.J.; Park, S.W.; Seung, K.B.; Choi, K.B.; Shishkov, M.; Schlendorf, K.; Pomerantsev, E.; et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 2002, 39, 604–609. [Google Scholar] [CrossRef]
- de Boer, J.F.; Leitgeb, R.; Wojtkowski, M. Twenty-five years of optical coherence tomography: The paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. Biomed. Opt. Express 2017, 8, 3248. [Google Scholar] [CrossRef]
- Spînu, M.; Onea, L.H.; Homorodean, C.; Olinic, M.; Ober, M.C.; Olinic, D.M. Optical Coherence Tomography-OCT for Characterization of Non-Atherosclerotic Coronary Lesions in Acute Coronary Syndromes. J. Clin. Med. 2022, 11, 265. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kawashima, H.; Hara, H.; Gao, C.; Wang, R.; Kogame, N.; Takahashi, K.; Chichareon, P.; Modolo, R.; Tomaniak, M.; et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front. Cardiovasc. Med. 2020, 7, 119. [Google Scholar] [CrossRef]
- Kume, T.; Akasaka, T.; Kawamoto, T.; Watanabe, N.; Toyota, E.; Neishi, Y.; Sukmawan, R.; Sadahira, Y.; Yoshida, K. Assessment of coronary intima--media thickness by optical coherence tomography: Comparison with intravascular ultrasound. Circ. J. 2005, 69, 903–907. [Google Scholar] [CrossRef]
- Kubo, T.; Xu, C.; Wang, Z.; Van Ditzhuijzen, N.S.; Bezerra, H.G. Plaque and thrombus evaluation by optical coherence tomography. Int. J. Cardiovasc. Imaging 2011, 27, 289–298. [Google Scholar] [CrossRef]
- Lee, T.; Kakuta, T.; Yonetsu, T.; Takahashi, K.; Yamamoto, G.; Iesaka, Y.; Fujiwara, H.; Isobe, M. Assessment of echo-attenuated plaque by optical coherence tomography and its impact on post-procedural creatine kinase-myocardial band elevation in elective stent implantation. JACC Cardiovasc. Interv. 2011, 4, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Vancraeynest, D.; Pasquet, A.; Roelants, V.; Gerber, B.L.; Vanoverschelde, J.L.J. Imaging the vulnerable plaque. J. Am. Coll. Cardiol. 2011, 57, 1961–1979. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Ino, Y.; Tanimoto, T.; Kitabata, H.; Tanaka, A.; Akasaka, T. Optical coherence tomography imaging in acute coronary syndromes. Cardiol. Res. Pract. 2011, 2011, 312978. [Google Scholar] [CrossRef]
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 2006, 47, C13-8. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Akasaka, T.; Kawamoto, T.; Okura, H.; Watanabe, N.; Toyota, E.; Neishi, Y.; Sukmawan, R.; Sadahira, Y.; Yoshida, K. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am. Heart J. 2006, 152, e1–e755. [Google Scholar] [CrossRef]
- Ino, Y.; Kubo, T.; Tanaka, A.; Kuroi, A.; Tsujioka, H.; Ikejima, H.; Okouchi, K.; Kashiwagi, M.; Takarada, S.; Kitabata, H.; et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: An optical coherence tomography study. JACC Cardiovasc. Interv. 2011, 4, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Porto, I.; Di Vito, L.; Burzotta, F.; Biasucci, L.M.; Crea, F. Superficial calcified nodules and post-stenting micro-dissections imaged through 3-dimensional optical coherence tomography. Int. J. Cardiol. 2012, 158, e62–e64. [Google Scholar] [CrossRef] [PubMed]
- Baruś, P.; Modrzewski, J.; Gumiężna, K.; Dunaj, P.; Głód, M.; Bednarek, A.; Wańha, W.; Roleder, T.; Kochman, J.; Tomaniak, M. Comparative Appraisal of Intravascular Ultrasound and Optical Coherence Tomography in Invasive Coronary Imaging: 2022 Update. J. Clin. Med. 2022, 11, 4055. [Google Scholar] [CrossRef] [PubMed]
- Araki, M.; Park, S.J.; Dauerman, H.L.; Uemura, S.; Kim, J.S.; Di Mario, C.; Johnson, T.W.; Guagliumi, G.; Kastrati, A.; Joner, M.; et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat. Rev. Cardiol. 2022, 19, 684–703. [Google Scholar] [CrossRef]
- Mintz, G.S.; Guagliumi, G. Intravascular imaging in coronary artery disease. Lancet 2017, 390, 793–809. [Google Scholar] [CrossRef]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef]
- Fujii, K.; Carlier, S.G.; Mintz, G.S.; Yang, Y.M.; Moussa, I.; Weisz, G.; Dangas, G.; Mehran, R.; Lansky, A.J.; Kreps, E.M.; et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: An intravascular ultrasound study. J. Am. Coll. Cardiol. 2005, 45, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Soeda, T.; Uemura, S.; Park, S.-J.; Jang, Y.; Lee, S.; Cho, J.-M.; Kim, S.-J.; Vergallo, R.; Minami, Y.; Ong, D.S.; et al. Incidence and Clinical Significance of Poststent Optical Coherence Tomography Findings. Circulation 2015, 132, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Meneveau, N.; Souteyrand, G.; Motreff, P.; Caussin, C.; Amabile, N.; Ohlmann, P.; Morel, O.; Lefrançois, Y.; Descotes-Genon, V.; Silvain, J.; et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with Non-ST-elevation acute coronary syndrome. Circulation 2016, 134, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Prati, F.; Romagnoli, E.; Burzotta, F.; Limbruno, U.; Gatto, L.; La Manna, A.; Versaci, F.; Marco, V.; Di Vito, L.; Imola, F.; et al. Clinical Impact of OCT Findings During PCI: The CLI-OPCI II Study. JACC Cardiovasc. Imaging 2015, 8, 1297–1305. [Google Scholar] [CrossRef]
- Hamdan, R.; Gonzalez, R.G.; Ghostine, S.; Caussin, C. Optical coherence tomography: From physical principles to clinical applications. Arch. Cardiovasc. Dis. 2012, 105, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Jegere, S.; Narbute, I.; Erglis, A. Use of intravascular imaging in managing coronary artery disease. World J. Cardiol. 2014, 6, 393–404. [Google Scholar] [CrossRef]
- Bouki, K.P.; Vlad, D.I.; Goulas, N.; Lambadiari, V.A.; Dimitriadis, G.D.; Kotsakis, A.A.; Barοutsi, K.; Toutouzas, K.P. Diagnostic Performance of Frequency-Domain Optical Coherence Tomography to Predict Functionally Significant Left Main Coronary Artery Stenosis. J. Interv. Cardiol. 2021, 2021, 7108284. [Google Scholar] [CrossRef]
- Romagnoli, E.; Ramazzotti, V.; Burzotta, F.; Gatto, L.; Marco, V.; Paoletti, G.; Biondi-Zoccai, G.; Alfonso, F.; Crea, F.; Trani, C.; et al. Definition of Optimal Optical Coherence Tomography-Based Stent Expansion Criteria: In-Stent Minimum Lumen Area Versus Residual Stent Underexpansion. Circ. Cardiovasc. Interv. 2022, 15, e011496. [Google Scholar] [CrossRef]
- Tanigawa, J.; Barlis, P.; Dimopoulos, K.; Dalby, M.; Moore, P.; Di Mario, C. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int. J. Cardiol. 2009, 134, 180–188. [Google Scholar] [CrossRef]
- Ali, Z.A.; Maehara, A.; Généreux, P.; Shlofmitz, R.A.; Fabbiocchi, F.; Nazif, T.M.; Guagliumi, G.; Meraj, P.M.; Alfonso, F.; Samady, H.; et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): A randomised controlled trial. Lancet 2016, 388, 2618–2628. [Google Scholar] [CrossRef]
- Wang, B.; Mintz, G.S.; Witzenbichler, B.; Souza, C.F.; Metzger, D.C.; Rinaldi, M.J.; Duffy, P.L.; Weisz, G.; Stuckey, T.D.; Brodie, B.R.; et al. Predictors and Long-Term Clinical Impact of Acute Stent Malapposition: An Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents (ADAPT-DES) Intravascular Ultrasound Substudy. J. Am. Heart Assoc. 2016, 5, e004438. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, E.; Gatto, L.; La Manna, A.; Burzotta, F.; Taglieri, N.; Saia, F.; Amico, F.; Marco, V.; Ramazzotti, V.; Di Giorgio, A.; et al. Role of residual acute stent malapposition in percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 2017, 90, 566–575. [Google Scholar] [CrossRef]
- Ali, Z.A.; Galougahi, K.K.; Shlofmitz, R.A.; Mintz, G.S. The “oculo-appositional reflex”: Should optical coherence tomography-detected stent malapposition be corrected? J. Am. Heart Assoc. 2019, 8, 1–5. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, B.K.; Lee, S.; Shim, J.-M.; Kim, J.-S.; Kim, B.-K.; Ko, Y.-G.; Choi, D.; Jang, Y.; Hong, M.-K. Serial changes of minimal stent malapposition not detected by intravascular ultrasound: Follow-up optical coherence tomography study. Clin. Res. Cardiol. 2010, 99, 639–644. [Google Scholar] [CrossRef]
- Souteyrand, G.; Amabile, N.; Mangin, L.; Chabin, X.; Meneveau, N.; Cayla, G.; Vanzetto, G.; Barnay, P.; Trouillet, C.; Rioufol, G.; et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: Insights from the national PESTO French registry. Eur. Heart J. 2016, 37, 1208–1216a. [Google Scholar] [CrossRef]
- Adriaenssens, T.; Joner, M.; Godschalk, T.C.; Malik, N.; Alfonso, F.; Xhepa, E.; De Cock, D.; Komukai, K.; Tada, T.; Cuesta, J.; et al. Optical coherence tomography findings in patients with coronary stent thrombosis: A report of the PRESTIGE consortium (prevention of late stent thrombosis by an interdisciplinary global european effort). Circulation 2017, 136, 1007–1021. [Google Scholar] [CrossRef]
- Taniwaki, M.; Radu, M.D.; Zaugg, S.; Amabile, N.; Garcia-Garcia, H.M.; Yamaji, K.; Jørgensen, E.; Kelbæk, H.; Pilgrim, T.; Caussin, C.; et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation 2016, 133, 650–660. [Google Scholar] [CrossRef]
- Im, E.; Hong, S.J.; Ahn, C.M.; Kim, J.S.; Kim, B.K.; Ko, Y.G.; Choi, D.; Jang, Y.; Hong, M.K. Long-Term Clinical Outcomes of Late Stent Malapposition Detected by Optical Coherence Tomography After Drug-Eluting Stent Implantation. J. Am. Heart Assoc. 2019, 8, 118–123. [Google Scholar] [CrossRef]
- Prati, F.; Romagnoli, E.; Manna, A.L.; Burzotta, F.; Gatto, L.; Marco, V.; Fineschi, M.; Fabbiocchi, F.; Versaci, F.; Trani, C.; et al. Long-term consequences of optical coherence tomography findings during percutaneous coronary intervention: The Centro Per La Lotta Contro L’infarto–Optimization Of Percutaneous Coronary Intervention (CLI-OPCI) LATE study. EuroIntervention 2018, 14, e443–e451. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kimura, S.; Akiyama, D.; Hishikari, K.; Kawaguchi, N.; Kamiishi, T.; Hikita, H.; Takahashi, A.; Isobe, M. Quantitative assessment of tissue prolapse on optical coherence tomography and its relation to underlying plaque morphologies and clinical outcome in patients with elective stent implantation. Int. J. Cardiol. 2014, 176, 182–190. [Google Scholar] [CrossRef]
- Prati, F.; Romagnoli, E.; Gatto, L.; La Manna, A.; Burzotta, F.; Limbruno, U.; Versaci, F.; Fabbiocchi, F.; Di Giorgio, A.; Marco, V.; et al. Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L’Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome). Circ. Cardiovasc. Interv. 2016, 9, 2329800. [Google Scholar] [CrossRef] [Green Version]
- Kume, T.; Okura, H.; Miyamoto, Y.; Yamada, R.; Saito, K.; Tamada, T.; Koyama, T.; Neishi, Y.; Hayashida, A.; Kawamoto, T.; et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation–preliminary observation—. Circ. J. 2012, 76, 698–703. [Google Scholar] [CrossRef]
- Choi, S.Y.; Witzenbichler, B.; Maehara, A.; Lansky, A.J.; Guagliumi, G.; Brodie, B.; Kellett, M.A., Jr.; Dressler, O.; Parise, H.; Mehran, R.; et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: A Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ. Cardiovasc. Interv. 2011, 4, 239–247. [Google Scholar] [CrossRef]
- Di Vito, L.; Yoon, J.H.; Kato, K.; Yonetsu, T.; Vergallo, R.; Costa, M.; Bezerra, H.G.; Arbustini, E.; Narula, J.; Crea, F.; et al. Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron. Artery Dis. 2014, 25, 172–185. [Google Scholar] [CrossRef]
- Ali, Z.A.; Galougahi, K.K.; Maehara, A.; Shlofmitz, R.A.; Fabbiocchi, F.; Guagliumi, G.; Alfonso, F.; Akasaka, T.; Matsumura, M.; Mintz, G.S.; et al. Outcomes of optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation: One-year results from the ILUMIEN III: OPTIMIZE PCI trial. EuroIntervention 2021, 16, 1085–1091. [Google Scholar] [CrossRef]
- Jinnouchi, H.; Sakakura, K.; Yanase, T.; Ugata, Y.; Tsukui, T.; Taniguchi, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Impact of stent edge dissection detected by optical coherence tomography after current-generation drug-eluting stent implantation. PLoS ONE 2021, 16, e0259693. [Google Scholar] [CrossRef]
- Jinnouchi, H.; Otsuka, F.; Sato, Y.; Bhoite, R.R.; Sakamoto, A.; Torii, S.; Yahagi, K.; Cornelissen, A.; Mori, M.; Kawakami, R.; et al. Healthy Strut Coverage After Coronary Stent Implantation: An Ex Vivo Human Autopsy Study. Circ. Cardiovasc. Interv. 2020, 13, e008869. [Google Scholar] [CrossRef]
- Virmani, R.; Farb, A. Pathology of in-stent restenosis. Curr. Opin. Lipidol. 1999, 10, 499–506. [Google Scholar] [CrossRef]
- Prati, F.; Zimarino, M.; Stabile, E.; Pizzicannella, G.; Fouad, T.; Rabozzi, R.; Filippini, A.; Pizzicannella, J.; Cera, M.; De Caterina, R. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart 2008, 94, 217–221. [Google Scholar] [CrossRef]
- Guagliumi, G.; Sirbu, V.; Musumeci, G.; Gerber, R.; Biondi-Zoccai, G.; Ikejima, H.; Ladich, E.; Lortkipanidze, N.; Matiashvili, A.; Valsecchi, O.; et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: Findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc. Interv. 2012, 5, 12–20. [Google Scholar] [CrossRef]
- Won, H.; Shin, D.-H.; Kim, B.-K.; Mintz, G.S.; Kim, J.-S.; Ko, Y.-G.; Choi, D.; Jang, Y.; Hong, M.-K. Optical coherence tomography derived cut-off value of uncovered stent struts to predict adverse clinical outcomes after drug-eluting stent implantation. Int. J. Cardiovasc. Imaging 2013, 29, 1255–1263. [Google Scholar] [CrossRef]
- Baumbach, A.; Bourantas, C. V Intravascular Imaging for Guiding In–Stent Restenosis and Stent Thrombosis Therapy. J. Am. Heart Assoc. 2022, 11, e026492. [Google Scholar] [CrossRef]
- Hara, T.; Ughi, G.J.; McCarthy, J.R.; Erdem, S.S.; Mauskapf, A.; Lyon, S.C.; Fard, A.M.; Edelman, E.R.; Tearney, G.J.; Jaffer, F.A. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur. Heart J. 2017, 38, 447–455. [Google Scholar] [CrossRef]
- Nusca, A.; Viscusi, M.M.; Piccirillo, F.; De Filippis, A.; Nenna, A.; Spadaccio, C.; Nappi, F.; Chello, C.; Mangiacapra, F.; Grigioni, F.; et al. In Stent Neo-Atherosclerosis: Pathophysiology, Clinical Implications, Prevention and Therapeutic Approaches. Life 2022, 12, 393. [Google Scholar] [CrossRef]
- Nakazawa, G.; Otsuka, F.; Nakano, M.; Vorpahl, M.; Yazdani, S.K.; Ladich, E.; Kolodgie, F.D.; Finn, A.V.; Virmani, R. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J. Am. Coll. Cardiol. 2011, 57, 1314–1322. [Google Scholar] [CrossRef]
- Sumino, Y.; Yonetsu, T.; Ueno, H.; Nogami, K.; Misawa, T.; Hada, M.; Yamaguchi, M.; Hoshino, M.; Kanaji, Y.; Sugiyama, T.; et al. Clinical significance of neoatherosclerosis observed at very late phase between 3 and 7 years after coronary stent implantation. J. Cardiol. 2021, 78, 58–65. [Google Scholar] [CrossRef]
- Kuroda, M.; Otake, H.; Shinke, T.; Takaya, T.; Nakagawa, M.; Osue, T.; Taniguchi, Y.; Iwasaki, M.; Kinutani, H.; Konishi, A.; et al. The impact of in-stent neoatherosclerosis on long-term clinical outcomes: An observational study from the Kobe University Hospital optical coherence tomography registry. EuroIntervention 2016, 12, e1366–e1374. [Google Scholar] [CrossRef]
- Yamamoto, W.; Fujii, K.; Otsuji, S.; Takiuchi, S.; Kakishita, M.; Shimatani, Y.; Hasegawa, K.; Ishibuchi, K.; Tamaru, H.; Ishii, R.; et al. Effect of neointimal tissue morphology on vascular response to balloon angioplasty in lesions with in-stent restenosis after drug-eluting stent deployment: An optical coherence tomography analysis. Heart Vessel. 2020, 35, 1193–1200. [Google Scholar] [CrossRef]
- Onuma, Y.; Katagiri, Y.; Burzotta, F.; Holm, N.R.; Amabile, N.; Okamura, T.; Mintz, G.S.; Darremont, O.; Lassen, J.F.; Lefèvre, T.; et al. Joint consensus on the use of OCT in coronary bifurcation lesions by the European and Japanese bifurcation clubs. EuroIntervention 2019, 14, e1568–e1577. [Google Scholar] [CrossRef]
- Watanabe, M.; Uemura, S.; Sugawara, Y.; Ueda, T.; Soeda, T.; Takeda, Y.; Kawata, H.; Kawakami, R.; Saito, Y. Side branch complication after a single-stent crossover technique: Prediction with frequency domain optical coherence tomography. Coron. Artery Dis. 2014, 25, 321–329. [Google Scholar] [CrossRef]
- Shlofmitz, E.; Sosa, F.; Goldberg, A.; Maehara, A.; Ali, Z.A.; Mintz, G.S.; Moses, J.W.; Stone, G.W.; Shlofmitz, R.A.; Jeremias, A. Bifurcation and ostial optical coherence tomography mapping (BOOM)—Case description of a novel bifurcation stent technique. Cardiovasc. Revasc. Med. 2018, 19, 47–49. [Google Scholar] [CrossRef]
- Alegria-Barrero, E.; Foin, N.; Chan, P.H.; Syrseloudis, D.; Lindsay, A.C.; Dimopolous, K.; Alonso-Gonz, R.; Viceconte, N.; Silva, R.D.; Mario, C. Di Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: Choosing the right cell matters. EuroIntervention 2012, 8, 205–213. [Google Scholar] [CrossRef]
- Okamura, T.; Nagoshi, R.; Fujimura, T.; Murasato, Y.; Yamawaki, M.; Ono, S.; Serikawa, T.; Hikichi, Y.; Norita, H.; Nakao, F.; et al. Impact of guidewire recrossing point into stent jailed side branch for optimal kissing balloon dilatation: Core lab 3D optical coherence tomography analysis. EuroIntervention 2018, 13, e1785–e1793. [Google Scholar] [CrossRef]
- Nagoshi, R.; Okamura, T.; Murasato, Y.; Fujimura, T.; Yamawaki, M.; Ono, S.; Serikawa, T.; Hikichi, Y.; Nakao, F.; Sakamoto, T.; et al. Feasibility and usefulness of three-dimensional optical coherence tomography guidance for optimal side branch treatment in coronary bifurcation stenting. Int. J. Cardiol. 2018, 250, 270–274. [Google Scholar] [CrossRef]
- Burzotta, F.; Dato, I.; Trani, C.; Pirozzolo, G.; De Maria, G.L.; Porto, I.; Niccoli, G.; Leone, A.M.; Schiavoni, G.; Crea, F. Frequency domain optical coherence tomography to assess non-ostial left main coronary artery. EuroIntervention 2015, 10, e1–e8. [Google Scholar] [CrossRef]
- Fujino, Y.; Bezerra, H.G.; Attizzani, G.F.; Wang, W.; Yamamoto, H.; Chamié, D.; Kanaya, T.; Mehanna, E.; Tahara, S.; Nakamura, S.; et al. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2013, 82, E173–E183. [Google Scholar] [CrossRef]
- Cortese, B.; Burzotta, F.; Alfonso, F.; Pellegrini, D.; Trani, C.; Aurigemma, C.; Rivero, F.; Antuña, P.; Orrego, P.S.; Prati, F. Role of optical coherence tomography for distal left main stem angioplasty. Catheter. Cardiovasc. Interv. 2020, 96, 755–761. [Google Scholar] [CrossRef]
- Cortese, B.; de la Torre Hernandez, J.M.; Lanocha, M.; Ielasi, A.; Giannini, F.; Campo, G.; D’Ascenzo, F.; Latini, R.A.; Krestianinov, O.; Alfonso, F.; et al. Optical coherence tomography, intravascular ultrasound or angiography guidance for distal left main coronary stenting. The ROCK cohort II study. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2022, 99, 664–673. [Google Scholar] [CrossRef]
- Amabile, N.; Rangé, G.; Souteyrand, G.; Godin, M.; Boussaada, M.M.; Meneveau, N.; Cayla, G.; Casassus, F.; Lefèvre, T.; Hakim, R.; et al. Optical coherence tomography to guide percutaneous coronary intervention of the left main coronary artery: The LEMON study. EuroIntervention 2021, 17, e124–e131. [Google Scholar] [CrossRef]
- Al-Sadawi, M.; Shaikh, S.; Marmur, J.D.; Salciccioli, L.; Kariyanna, P.T.; McFarlane, I.M. Post-partum Spontaneous Coronary Artery Disection: A Case Report. Am. J. Med. Case Rep. 2018, 6, 218–221. [Google Scholar] [CrossRef]
- Adlam, D.; Alfonso, F.; Maas, A.; Vrints, C. European Society of Cardiology, acute cardiovascular care association, SCAD study group: A position paper on spontaneous coronary artery dissection. In Proceedings of the European Heart Journal; NLM (Medline): Bethesda, MA, USA, 2018; Volume 39, pp. 3353–3368. [Google Scholar]
- Hayes, S.N.; Kim, C.E.S.H.; Saw, J.; Adlam, D.; Arslanian-Engoren, C.; Economy, K.E.; Ganesh, S.K.; Gulati, R.; Lindsay, M.E.; Mieres, J.H.; et al. Spontaneous coronary artery dissection: Current state of the science: A scientific statement from the American Heart Association. Circulation 2018, 137, e523–e557. [Google Scholar] [CrossRef] [Green Version]
- Lempereur, M.; Fung, A.; Saw, J. Stent mal-apposition with resorption of intramural hematoma with spontaneous coronary artery dissection. Cardiovasc. Diagn. Ther. 2015, 5, 323–329. [Google Scholar] [CrossRef]
- Satogami, K.; Ino, Y.; Kubo, T.; Shiono, Y.; Nishiguchi, T.; Matsuo, Y.; Orii, M.; Yamano, T.; Yamaguchi, T.; Hirata, K.; et al. Successful stenting with optical frequency domain imaging guidance for spontaneous coronary artery dissection. JACC Cardiovasc. Interv. 2015, 8, e83–e85. [Google Scholar] [CrossRef]
- Mangiacapra, F.; Viscusi, M.M.; Paolucci, L.; Nusca, A.; Melfi, R.; Ussia, G.P.; Grigioni, F. The Pivotal Role of Invasive Functional Assessment in Patients With Myocardial Infarction With Non-Obstructive Coronary Arteries (MINOCA). Front. Cardiovasc. Med. 2021, 8, 781485. [Google Scholar] [CrossRef]
- Tamis-Holland, J.E.; Jneid, H.; Reynolds, H.R.; Agewall, S.; Brilakis, E.S.; Brown, T.M.; Lerman, A.; Cushman, M.; Kumbhani, D.J.; Arslanian-Engoren, C.; et al. Contemporary Diagnosis and Management of Patients With Myocardial Infarction in the Absence of Obstructive Coronary Artery Disease: A Scientific Statement From the American Heart Association. Circulation 2019, 139, E891–E908. [Google Scholar] [CrossRef]
- Opolski, M.P.; Spiewak, M.; Marczak, M.; Debski, A.; Knaapen, P.; Schumacher, S.P.; Staruch, A.D.; Grodecki, K.; Chmielak, Z.; Lazarczyk, H.; et al. Mechanisms of Myocardial Infarction in Patients With Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Imaging 2019, 12, 2210–2221. [Google Scholar] [CrossRef]
- Reynolds, H.R.; Maehara, A.; Kwong, R.Y.; Sedlak, T.; Saw, J.; Smilowitz, N.R.; Mahmud, E.; Wei, J.; Marzo, K.; Matsumura, M.; et al. Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Nonobstructive Coronary Arteries in Women. Circulation 2021, 143, 624–640. [Google Scholar] [CrossRef]
- Shin, E.S.; Ann, S.H.; Singh, G.B.; Lim, K.H.; Yoon, H.J.; Hur, S.H.; Her, A.Y.; Koo, B.K.; Akasaka, T. OCT-Defined Morphological Characteristics of Coronary Artery Spasm Sites in Vasospastic Angina. JACC Cardiovasc. Imaging 2015, 8, 1059–1067. [Google Scholar] [CrossRef]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. C-Reactive Protein Levels and Outcomes after Statin Therapy. N. Engl. J. Med. 2005, 352, 20–28. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis. 2016, 109, 708–715. [Google Scholar] [CrossRef]
- Takarada, S.; Imanishi, T.; Kubo, T.; Tanimoto, T.; Kitabata, H.; Nakamura, N.; Tanaka, A.; Mizukoshi, M.; Akasaka, T. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: Assessment by optical coherence tomography study. Atherosclerosis 2009, 202, 491–497. [Google Scholar] [CrossRef]
- Nishiguchi, T.; Kubo, T.; Tanimoto, T.; Ino, Y.; Matsuo, Y.; Yamano, T.; Terada, K.; Emori, H.; Katayama, Y.; Taruya, A.; et al. Effect of Early Pitavastatin Therapy on Coronary Fibrous-Cap Thickness Assessed by Optical Coherence Tomography in Patients With Acute Coronary Syndrome: The ESCORT Study. JACC Cardiovasc. Imaging 2018, 11, 829–838. [Google Scholar] [CrossRef]
- Hou, J.; Xing, L.; Jia, H.; Vergallo, R.; Soeda, T.; Minami, Y.; Hu, S.; Yang, S.; Zhang, S.; Lee, H.; et al. Comparison of Intensive Versus Moderate Lipid-Lowering Therapy on Fibrous Cap and Atheroma Volume of Coronary Lipid-Rich Plaque Using Serial Optical Coherence Tomography and Intravascular Ultrasound Imaging. Am. J. Cardiol. 2016, 117, 800–806. [Google Scholar] [CrossRef]
- Komukai, K.; Kubo, T.; Kitabata, H.; Matsuo, Y.; Ozaki, Y.; Takarada, S.; Okumoto, Y.; Shiono, Y.; Orii, M.; Shimamura, K.; et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: The EASY-FIT study. J. Am. Coll. Cardiol. 2014, 64, 2207–2217. [Google Scholar] [CrossRef]
- Ozaki, Y.; Garcia-Garcia, H.M.; Beyene, S.S.; Hideo-Kajita, A.; Kuku, K.O.; Kolm, P.; Waksman, R. Effect of Statin Therapy on Fibrous Cap Thickness in Coronary Plaque on Optical Coherence Tomography–Review and Meta-Analysis. Circ. J. 2019, 83, 1480–1488. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.P.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1308–1321. [Google Scholar] [CrossRef]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; Van Geuns, R.J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA 2022, 327, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Choi, S.C.; Cho, J.Y.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.S. Pioglitazone increases circulating microRNA-24 with decrease in coronary neointimal hyperplasia in type 2 diabetic patients- optical coherence tomography analysis. Circ. J. 2015, 79, 880–888. [Google Scholar] [CrossRef]
- Yamamoto, H.; Konishi, A.; Shinke, T.; Otake, H.; Kuroda, M.; Osue, T.; Sawada, T.; Takaya, T.; Kawai, H.; Hashimoto, N.; et al. The impact of vildagliptin on the daily glucose profile and coronary plaque stability in impaired glucose tolerance patients with coronary artery disease: VOGUE-A multicenter randomized controlled trial. BMC Cardiovasc. Disord. 2021, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Hashikata, T.; Ikutomi, M.; Jimba, T.; Shindo, A.; Kakuda, N.; Katsushika, S.; Yokoyama, M.; Kishi, M.; Sato, T.; Matsushita, M.; et al. Empagliflozin attenuates neointimal hyperplasia after drug-eluting-stent implantation in patients with type 2 diabetes. Heart Vessel. 2020, 35, 1378–1389. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 2013, 61, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; et al. Colchicine in Patients with Acute Coronary Syndrome: The Australian COPS Randomized Clinical Trial. Circulation 2020, 142, 1890–1900. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Montarello, N.J.; Singh, K.; Sinhal, A.; Wong, D.T.L.; Alcock, R.; Rajendran, S.; Dautov, R.; Barlis, P.; Patel, S.; Nidorf, S.M.; et al. Assessing the Impact of Colchicine on Coronary Plaque Phenotype After Myocardial Infarction with Optical Coherence Tomography: Rationale and Design of the COCOMO-ACS Study. Cardiovasc. Drugs Ther. 2022, 36, 1175–1186. [Google Scholar] [CrossRef]
- Chu, M.; Jia, H.; Gutiérrez-Chico, J.L.; Maehara, A.; Ali, Z.A.; Zeng, X.; He, L.; Zhao, C.; Matsumura, M.; Wu, P.; et al. Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques. EuroIntervention 2021, 17, 41–50. [Google Scholar] [CrossRef]
- Secemsky, E.A.; Darki, A.; Khuddus, M.A.; Padaliya, B.B.; West, N.E.J.; Rapoza, R.J.; Buccola, J.; Cabrera, H.G.; Amis, G.; Chehab, B.M. Improving procedural efficiency during percutaneous coronary interventions utilizing a standardized optical coherence tomography (OCT) workflow: Insights from the LightLab initiative. J. Am. Coll. Cardiol. 2021, 77, 949. [Google Scholar] [CrossRef]
IVUS | OCT | |
---|---|---|
Source of image | Ultrasound | Infrared light |
Penetration depth | 4–8 mm | 2 mm |
Axial resolution | 150 μm | 15 μm |
Acquisition speed | 0.5 mm/s | 25 mm/s |
Blood clearance | Not required | Contrast 10–15 mL |
Necrotic core | + | ++ |
TCFA | - | +++ |
Thrombus | + | +++ |
Stent apposition | ++ | +++ |
Dissection | ++ | +++ |
Calcium | +++ | ++ |
Ostial lesion | ++ | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viscusi, M.M.; La Porta, Y.; Migliaro, G.; Gargano, G.M.; Nusca, A.; Gatto, L.; Budassi, S.; Paolucci, L.; Mangiacapra, F.; Ricottini, E.; et al. Current Applications and New Perspectives in Optical Coherence Tomography (OCT) Coronary Atherosclerotic Plaque Assessment: From PCI Optimization to Pharmacological Treatment Guidance. Photonics 2023, 10, 158. https://doi.org/10.3390/photonics10020158
Viscusi MM, La Porta Y, Migliaro G, Gargano GM, Nusca A, Gatto L, Budassi S, Paolucci L, Mangiacapra F, Ricottini E, et al. Current Applications and New Perspectives in Optical Coherence Tomography (OCT) Coronary Atherosclerotic Plaque Assessment: From PCI Optimization to Pharmacological Treatment Guidance. Photonics. 2023; 10(2):158. https://doi.org/10.3390/photonics10020158
Chicago/Turabian StyleViscusi, Michele Mattia, Ylenia La Porta, Giuseppe Migliaro, Gian Marco Gargano, Annunziata Nusca, Laura Gatto, Simone Budassi, Luca Paolucci, Fabio Mangiacapra, Elisabetta Ricottini, and et al. 2023. "Current Applications and New Perspectives in Optical Coherence Tomography (OCT) Coronary Atherosclerotic Plaque Assessment: From PCI Optimization to Pharmacological Treatment Guidance" Photonics 10, no. 2: 158. https://doi.org/10.3390/photonics10020158
APA StyleViscusi, M. M., La Porta, Y., Migliaro, G., Gargano, G. M., Nusca, A., Gatto, L., Budassi, S., Paolucci, L., Mangiacapra, F., Ricottini, E., Melfi, R., Rinaldi, R., Prati, F., Ussia, G. P., & Grigioni, F. (2023). Current Applications and New Perspectives in Optical Coherence Tomography (OCT) Coronary Atherosclerotic Plaque Assessment: From PCI Optimization to Pharmacological Treatment Guidance. Photonics, 10(2), 158. https://doi.org/10.3390/photonics10020158