Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers
Abstract
:1. Introduction
2. Structure and Principle of Integrated External Cavity Tunable Diode Lasers
2.1. Structure of Integrated External Cavity Tunable Diode Lasers
2.2. Principle of Integrated External Cavity Tunable Diode Lasers
3. Hybrid Integrated External Cavity Tunable Diode Laser
3.1. Structure of 1.55 μm Waveband Hybrid Integrated External Cavity Tunable Diode Lasers
3.2. Advances in 1.55 μm Waveband Hybrid Integrated External Cavity Tunable Diode Lasers
3.2.1. Advances in Wavelength Tunable Width
3.2.2. Advances in Linewidth
3.2.3. Advances in Linewidth and Wavelength Tunable Width
4. Monolithic Integrated External Cavity Tunable Diode Laser
4.1. Structure of 1.55 μm Waveband Monolithic Integrated External Cavity Tunable Diode Lasers
4.2. Advances in 1.55 μm Waveband Monolithic Integrated External Cavity Tunable Diode Lasers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent advances in optical technologies for data centers: A review. Optica 2018, 5, 1354–1370. [Google Scholar] [CrossRef]
- Tang, R.; Kita, T.; Yamada, H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach–Zehnder interferometer. Opt. Lett. 2015, 40, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Morton, P.A.; Bowers, J.E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt. Lett. 2019, 44, 3825–3828. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M.; et al. Hertz-linewidth diode lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Komljenovic, T.; Srinivasan, S.; Norberg, E.; Davenport, M.; Fish, G.; Bowers, J.E. Widely tunable narrow-linewidth monolithically integrated external-cavity diode lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 214–222. [Google Scholar] [CrossRef]
- Sato, K.; Kobayashi, N.; Namiwaka, M.; Yamamoto, K.; Kita, T.; Yamada, H.; Yamazaki, H. High output power and narrow linewidth silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–3. [Google Scholar]
- Guo, Y.; Li, X.; Xu, W.; Liu, C.; Jin, M.; Lu, L.; Xie, J.; Stroganov, A.; Chen, J.; Zhou, L. A hybrid-integrated external cavity laser with ultra-wide wavelength tuning range and high side-mode suppression. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Volet, N.; Yi, X.; Yang, Q.F.; Stanton, E.J.; Morton, P.A.; Yang, K.Y.; Vahala, K.J.; Bowers, J.E. Micro-resonator soliton generated directly with a diode laser. Laser Photonics Rev. 2018, 12, 1700307. [Google Scholar] [CrossRef]
- Ludwig, R.; Feiste, U.; Diez, S.; Schubert, C.; Schmidt, C.; Ehrke, H.J.; Weber, H.G. Unrepeatered 160Gbit/s RZ single-channel transmission over 160km of standard fibre at 1.55 µm with hybrid MZI optical demultiplexer. Electron. Lett. 2000, 36, 1405–1406. [Google Scholar] [CrossRef]
- Lang, X.; Jia, P.; Chen, Y.; Qin, L.; Liang, L.; Chen, C.; Wang, Y.; Shan, X.; Ning, Y.; Wang, L.; et al. Advances in narrow linewidth diode lasers. Sci. China Inf. Sci. 2019, 62, 61401. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, R.; Qiu, B.; Wang, W. Waveguide external cavity narrow linewidth diode lasers. J. Semicond. 2021, 42, 041308. [Google Scholar] [CrossRef]
- Deki, Y.; Hatanaka, T.; Takahashi, M.; Takeuchi, T.; Watanabe, S.; Takaesu, S.; Miyazaki, T.; Horie, M.; Yamazaki, H. Wide-wavelength tunable lasers with 100 GHz FSR ring resonators. Electron. Lett. 2007, 43, 225–226. [Google Scholar] [CrossRef]
- Li, N.; Chen, G.; Ng, D.K.T.; Lim, L.W.; Xue, J.; Ho, C.P.; Fu, Y.H.; Lee, L.Y.T. Integrated lasers on silicon at communication wavelength: A progress review. Adv. Opt. Mater. 2022, 10, 2201008. [Google Scholar] [CrossRef]
- Bian, Y.; Ramachandran, K.; Peng, B.; Hedrick, B.; Mills, S.; Donegan, K.; Esopi, M.; Hirokawa, T.; Jacob, A.; Karra, V.; et al. Integrated laser attach technology on a monolithic silicon photonics platform. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Vancouver, BC, Canada, 13 November 2020; IEEE: Piscataway, NJ, USA, 2021; pp. 237–244. [Google Scholar]
- Luo, X.; Cao, Y.; Song, J.; Hu, X.; Cheng, Y.; Li, C.; Liu, C.; Liow, T.; Yu, M.; Wang, H.; et al. High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits. Front. Mater. 2015, 2, 28. [Google Scholar] [CrossRef]
- Valicourt, G.D.; Chang, C.M.; Eggleston, M.S.; Melikyan, A.; Zhu, C.; Lee, J.; Simsarian, J.E.; Chandrasekhar, S.; Sinsky, J.H.; Kim, K.W.; et al. Photonic integrated circuit based on hybrid III–V/silicon integration. J. Light. Technol. 2018, 36, 265–273. [Google Scholar] [CrossRef]
- Kato, K.; Tohmori, Y. PLC hybrid integration technology and its application to photonic components. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 4–13. [Google Scholar] [CrossRef]
- Miller, S.E. Integrated optics: An introduction. Bell Syst. Tech. J. 1969, 48, 2059–2069. [Google Scholar] [CrossRef]
- Chu, T.; Fujioka, N.; Ishizaka, M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators. Opt. Express 2009, 17, 14063–14068. [Google Scholar] [CrossRef]
- Lewander, M.; Fried, A.; Weibring, P.; Richter, D.; Spuler, S.; Rippe , L. Fast and sensitive time-multiplexed gas sensing of multiple lines using a miniature telecom diode laser between 1529 nm and 1565 nm. Appl. Phys. B 2011, 104, 715–723. [Google Scholar] [CrossRef]
- Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Slot, P.J.M.; Boller, K.J. A hybrid semiconductor-glass waveguide laser. In Proceedings of the Laser Sources and Applications II. SPIE 2014, 9135, 231–236. [Google Scholar]
- Kita, T.; Tang, R.; Yamada, H. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range. Appl. Phys. Lett. 2015, 106, 111104. [Google Scholar] [CrossRef]
- Verdier, A.; Valicourt, G.D.; Brenot, R.; Debregeas, H.; Dong, P.; Earnshaw, M.; Carrère, H.; Chen, Y.K. Ultra wide band wavelength-tunable hybrid external-cavity lasers. J. Light. Technol. 2017, 36, 37–43. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, W. 4-D Imaging of Beating Tissues Using Optical Coherence Tomography. IEEE Photonics J. 2021, 13, 3900211. [Google Scholar] [CrossRef]
- Tsong, W.; van den Vlekkert, I.; Musa, S.; Raimond, N.F.; Noor, A.S.; Marcel, H.; Arjan, M.; Edwin, J.K.; Dimitri, G. 139 nm tuning range, high speed wavelength modulation, and high output power up to 60 mW from a single gain, two-ring vernier external cavity laser. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXVII, San Francisco, CA, USA, 30 January–2 February 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12424, pp. 86–90. [Google Scholar]
- Debregeas, H.; Ferrari, C.; Cappuzzo, M.A.; Klemens, F.; Keller, R.; Pardo, F.; Bolle, C.; Xie, C.; Earnshaw, M.P. 2kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity. In Proceedings of the 2014 International Diode Laser Conference, Palma de Mallorca, Spain, 7–10 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 50–51. [Google Scholar]
- Fan, Y.; Epping, J.P.; Oldenbeuving, R.M.; Roeloffzen, C.G.H.; Hoekman, M.; Dekker, R.; Heideman, R.G.; Slot, P.J.M.; Boller, K.J. Optically Integrated InP–Si3N4 Hybrid Laser. IEEE Photonics J. 2016, 8, 1505111. [Google Scholar] [CrossRef]
- Zhao, J.L.; Oldenbeuving, R.M.; Epping, J.P.; Hoekman, M.; Heideman, R.G.; Dekker, R.; Fan, Y.; Boller, K.J.; Ji, R.Q.; Fu, S.M.; et al. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators. In Proceedings of the 2016 IEEE 13th International Conference on Group IV Photonics (GFP), Shanghai, China, 24–26 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 24–25. [Google Scholar]
- Xu, Y.; Maier, P.; Blaicher, M.; Dietrich, P.I.; Palomo, P.M.; Hartmann, W.; Bao, Y.; Peng, H.; Billah, M.R.; Singer, S.; et al. Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Sci. Rep. 2021, 11, 16426. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, R.; Zhou, G.; Lu, L.; Stroganov, A.; Nisar, M.S.; Chen, J.; Zhou, L. Thermally tuned high-performance III-V/Si3N4 external cavity laser. IEEE Photonics J. 2021, 13, 1500813. [Google Scholar] [CrossRef]
- Maier, P.; Chen, Y.; Xu, Y.; Bao, Y.; Blaicher, M.; Geskus, D.; Dekker, R.; Liu, J.; Dietrich, P.I.; Peng, H.; et al. Sub-kHz-linewidth external-cavity laser (ECL) with Si3N4 resonator used as a tunable pump for a Kerr frequency comb. J. Light. Technol. 2023, 41, 3479–3490. [Google Scholar] [CrossRef]
- Fan, Y.; Oldenbeuving, R.M.; Roeloffzen, C.G.H.; Hoekman, M.; Geskus, D.; Heideman, R.G.; Boller, K.J. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), Munich, Germany, 25–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar]
- Guan, H.; Novack, A.; Galfsky, T.; Ma, Y.; Fathololoumi, S.; Horth, A.; Huynh, T.N.; Roman, J.; Shi, R.; Caverley, M.; et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt. Express 2018, 26, 7920–7933. [Google Scholar] [CrossRef] [PubMed]
- Rees, A.V.; Fan, Y.; Geskus, D.; Klein, E.J.; Oldenbeuving, R.M.; Slot, P.J.M.; Boller, K.J. Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser. Opt. Express 2020, 28, 5669–5683. [Google Scholar] [CrossRef]
- Morton, P.A.; Xiang, C.; Khurgin, J.B.; Morton, C.D.; Tran, M.; Peters, J.; Guo, J.; Morton, M.J.; Bowers, J.E. Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100 Hz Lorentzian linewidth. J. Light. Technol. 2022, 40, 1802–1809. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Jin, M.; Lu, L.; Xie, J.; Chen, J.; Zhou, L. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photonics 2022, 7, 066101. [Google Scholar] [CrossRef]
- Zhao, R.; Guo, Y.; Lu, L.; Nisar, M.S.; Chen, J.; Zhou, L. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Opt. Express 2021, 29, 10958–10966. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, L.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, D.; Mukherjee, K.; Li, Y.; Zhang, C.; Kurczveil, G.; Huang, X.; Beausoleil, R.G. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl. 2019, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.R.H.; Bruce, E.J.; Ram, R.J.; Kirchain, R.E. Process-based cost modeling of photonics manufacture: The cost competitiveness of monolithic integration of a 1550-nm DFB laser and an electroabsorptive modulator on an InP platform. J. Light. Technol. 2006, 24, 3175–3186. [Google Scholar] [CrossRef]
- Suzuki, K.; Kita, T.; Yamada, H. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters/Silicon Photonics VI. SPIE 2011, 7943, 361–367. [Google Scholar]
- Kita, T.; Tang, R.; Yamada, H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 23–34. [Google Scholar] [CrossRef]
- Rao, Y.; Chase, C.; Huang, M.C.Y.; Khaleghi, S.; Chitgarha, M.R.; Ziyadi, M.; Worland, D.P.; Willner, A.E.; Chang-Hasnain, C.J. Continuous tunable 1550-nm high contrast grating VCSEL. In Proceedings of the CLEO: Science and Innovations. Optica Publishing Group, San Jose, CA, USA; 2012; pp. 6–11. [Google Scholar]
- Oldenbeuving, R.M.; Klein, E.J.; Offerhaus, H.L.; Lee, C.J.; Song, H.; Boller, K.J. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys. Lett. 2012, 10, 015804. [Google Scholar] [CrossRef]
- Kobayashi, N.; Sato, K.; Namiwaka, M.; Yamamoto, K.; Watanabe, S.; Kita, T.; Yamada, H.; Yamazaki, H. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Light. Technol. 2015, 33, 1241–1246. [Google Scholar] [CrossRef]
- Latkowski, S.; Hänsel, A.; Bhattacharya, N.; Bhattacharya, N.; de Vries, T.; Augustin, L.; Williams, K.; Smit, M.; Bente, E. Novel widely tunable monolithically integrated laser source. IEEE Photonics J. 2015, 7, 1503709. [Google Scholar]
- Andreou, S.; Williams, K.A.; Bente, E.A.J.M. Electro-optic tuning of a monolithically integrated widely tuneable InP laser with free-running and stabilized operation. J. Light. Technol. 2019, 38, 1887–1894. [Google Scholar] [CrossRef]
- McKinzie, K.A.; Wang, C.; Noman, A.A.; Mathine, D.L.; Han, K.; Leaird, D.E.; Hoefler, G.E.; Lal, V.; Kish, F.; Qi, M.; et al. InP high power monolithically integrated widely tunable laser and SOA array for hybrid integration. Opt. Express 2021, 29, 3490–3502. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Z.; Zhao, J.; Meng, J.; Song, G.; He, J.J. Tunable V-Cavity Laser Monolithically Integrated With Traveling Wave Mach-Zehnder Modulator. IEEE Photonics Technol. Lett. 2022, 34, 1046–1049. [Google Scholar] [CrossRef]
- Hao, Y.-Z.; Sheng, M.-W.; Zhang, Z.-N.; Li, J.-C.; Xiao, J.-L.; Yang, Y.-D.; Huang, Y.-Z. High-Speed Directly Modulated Widely Tunable Hybrid Square/Rhombus-Rectangular Coupled Cavity Lasers. J. Light. Technol. 2023, 41, 5668–5674. [Google Scholar] [CrossRef]
- Jain, G.; Andreou, S.; McGuinness, C.; Gutierrez-Pascual, M.D.; Troncoso-Costas, M.; Venkatasubramani, L.N.; Barry, L.P.; Augustin, L.; Smyth, F.; Duggan, S. Widely tunable C-band laser and module with nanosecond tuning and narrow linewidth. Proc. SPIE 2023, 12424, 124241M-1–1424241M-7. [Google Scholar]
- Wang, K.; Chen, Q.; Jiang, C.; Chen, Z.; Tan, S.; Lu, M.; Lu, Q.; Guo, W. Narrow linewidth electro-optically tuned multi-channel interference widely tunable semiconductor laser. Opt. Express 2023, 31, 4497–4506. [Google Scholar] [CrossRef]
- Kim, J.H.; Aghaeimeibodi, S.; Carolan, J.; Englund, D.; Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 2020, 7, 291–308. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Morini, D.M.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Fang, Q.; Shi, Y.; Gao, H. A review of new techniques for improving the beam quality of semiconductor lasers. Opt. Technol. 2003, 1, 107–109+112. [Google Scholar]
- Liu, M.; Zhang, F.; Xu, C.; Ma, Z.; Zhong, S.; Duan, J. Coupling efficiency of laser diode to GRIN fiber by aspherical lens. Opt. Fiber Technol. 2022, 73, 103069. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Campenhout, J.V.; Merckling, C.; Thourhout, D.V. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef]
- Yan, Z.; Han, Y.; Lin, L.; Xue, Y.; Ma, C.; Ng, W.K.; Wong, K.S.; Lau, K.M. A monolithic InP/SOI platform for integrated photonics. Light Sci. Appl. 2021, 10, 200. [Google Scholar] [CrossRef]
Type | Tuning (nm) | Wavelength Coverage (nm) | Working Waveband | Linewidth (kHz) | SMSR (dB) | Current (mA) | Power (mW) | Year |
---|---|---|---|---|---|---|---|---|
Hybrid | 38 | 153X~156X | C, L | - | >40 | 200 | 25 | 2010 [38] |
Hybrid | 35 | 154X~158X | C, L | 2 | >60 | 200 | 3.1 | 2014 [26] |
Hybrid | 46.8 | 1531~1577.8 | C, L | 24 | >50 | 90 | 5.7 | 2014 [21] |
Hybrid | 99.2 | 1527.9~1627.1 | S, C, L, U | - | >29 | 300 | 35 | 2015 [22] |
Hybrid | 50 | 1530~1580 | C, L | 65 | >45 | 500 | 16 | 2016 [28] |
Hybrid | 43 | 154X~158X | C, L | 300 | >35 | 200 | 1.7 | 2016 [27] |
Hybrid | 81 | 1500~1581 | S, C, L | 0.29 | - | - | 13 | 2017 [32] |
Hybrid | 95 | 1540~1635 | C, L, U | 550 | >35 | 600 | 20 | 2018 [23] |
Hybrid | 60 | 1515~1575 | S, C, L | 37 | 55 | 180 | 11 | 2018 [33] |
Hybrid | 120 | 1480~1600 | S, C, L | 2.2 | 63 | 300 | 24 | 2020 [34] |
Hybrid | 58.5 | 1516.5~1575 | S, C, L | 2.5 | >70 | 500 | 34 | 2021 [30] |
Hybrid | 50 | 1515~1565 | S, C | 105 | >40 | 100 | 17.8 | 2021 [29] |
Hybrid | 44 | 1524~1568 | S, C, L | 6.6 | >67 | 350 | 23.5 | 2021 [37] |
Hybrid | 118 | 1480~1598 | S, C, L | 0.1 | >40 | 500 | 15 | 2022 [35] |
Hybrid | 172 | 1487~1659 | S, C, L, U | 4 | >40 | 309 | 26.7 | 2022 [36] |
Hybrid | 90 | 1480~1570 | S, C, L | 0.979 | >45 | 100 | 15.8 | 2023 [31] |
Hybrid | 139 | 1473~1612 | S, C, L | <5 | - | 350 | 60 | 2023 [25] |
Type | Tuning (nm) | Wavelength Coverage (nm) | Working Waveband | Linewidth (kHz) | SMSR (dB) | Current (mA) | Power (mW) | Year |
---|---|---|---|---|---|---|---|---|
Monolithic | 26.3 | 154X~156X | C, L | - | - | 20 | 1.5 | 2012 [43] |
Monolithic | 44 | 153X~157X | C, L | 25 | 50 | 87 | 1 | 2012 [44] |
Monolithic | 65 | 1510~1575 | S, C, L | <15 | >45 | 650 | 160 | 2015 [45] |
Monolithic | 34 | 1522~1556 | S, C | 110 | >50 | 200 | 1.8 | 2019 [48] |
Monolithic | 45 | 1513~1558 | S, C | 3 | 56 | 200 | 37.9 | 2021 [47] |
Monolithic | 52 | 1513~1565 | S, C | - | >38 | 100 | 5.5 | 2022 [49] |
Monolithic | 33 | 1537.4~1570.4 | C, L | <4000 | >40 | 60 | 21.8 | 2023 [50] |
Monolithic | 37 | 1536~1573 | C, L | <450 | >45 | - | - | 2023 [51] |
Monolithic | 48.8 | 152X~157X | S, C, L | <320 | >40 | 170 | 20 | 2023 [52] |
Type | Maximum Tuning Range | Narrowest Linewidth | Maximum Power | Maximum SMSR | Structure | Volume | Cost |
---|---|---|---|---|---|---|---|
Hybrid | 172 nm | 100 Hz | 60 mW | 70 dB | Complex | Small | Lower |
Monolithic | 65 nm | 3 kHz | 160 mW | 56 dB | More complex | Smaller | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, X.; Luo, W.; Shi, J.; Sun, K.; Qiu, M.; Zheng, Z.; Kong, H.; Zhou, J.; Zhang, C.; et al. Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers. Photonics 2023, 10, 1287. https://doi.org/10.3390/photonics10111287
Zhang L, Li X, Luo W, Shi J, Sun K, Qiu M, Zheng Z, Kong H, Zhou J, Zhang C, et al. Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers. Photonics. 2023; 10(11):1287. https://doi.org/10.3390/photonics10111287
Chicago/Turabian StyleZhang, Linyu, Xuan Li, Wei Luo, Junce Shi, Kangxun Sun, Meiye Qiu, Zhaoxuan Zheng, Huiying Kong, Jinhui Zhou, Chi Zhang, and et al. 2023. "Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers" Photonics 10, no. 11: 1287. https://doi.org/10.3390/photonics10111287
APA StyleZhang, L., Li, X., Luo, W., Shi, J., Sun, K., Qiu, M., Zheng, Z., Kong, H., Zhou, J., Zhang, C., Li, Z., Qu, Y., Qiao, Z., & Li, L. (2023). Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers. Photonics, 10(11), 1287. https://doi.org/10.3390/photonics10111287