Perfect Solar Absorber Based on Four-Step Stacked Metamaterial
Abstract
:1. Introduction
2. Structure Design and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gasparini, L.; Racchi, M.; Benussi, L.; Curti, D.; Binetti, G.; Bianchetti, A.; Trabucchi, M.; Govoni, S. Effect of energy shortage and oxidative stress on amyloid precursor protein metabolism in COS cells. Neurosci. Lett. 1997, 231, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Meinel, A.B.; Meinel, M.P. Applied solar energy: An introduction. NASA STI/Recon Tech. Rep. A 1977, 77, 33445. [Google Scholar]
- Gong, J.; Li, C.; Wasielewski, M.R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yu, S.; Li, Z.; Pan, D.; Xu, Z.; Zhao, T. Ultra-Broadband Spectrally Selective Absorber for Solar Thermal Absorption Based on TiN Square-Ring Meta-Structure. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef]
- Metamaterials: Physics and Engineering Explorations; John Wiley & Sons: Hoboken, NJ, USA, 2006.
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
- Qing, Y.M.; Huang, Z.; Jiang, H.; Li, B. Polarization-dependent thermal-tunable graphene-based metamaterial exploiting critical coupling with guided mode resonances. J. Opt. Soc. Am. B 2023, 40, 233–238. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Guo, Z.; Jin, G. Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-based metasurfaces. Opt. Express 2022, 30, 35554–35566. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.M.; Ma, H.F.; Yu, S.; Cui, T.J. Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance. Opt. Lett. 2019, 44, 3118–3121. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Karim, M.; Islam, S.S.; Shuvo, M.M.K.; Akter, T.; Almutairi, A.F.; Islam, M.T. A multi-band near perfect polarization and angular insensitive metamaterial absorber with a simple octagonal resonator for visible wavelength. IEEE Access 2021, 9, 117746–117760. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, J.; Zuo, D.; Wang, X. Perfect narrow band absorber for sensing applications. Opt. Express 2016, 24, 9288–9294. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Zhang, H.; Tang, P.; Wu, B.; Liu, G. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 2019, 27, 11809–11818. [Google Scholar] [CrossRef]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Hoa, N.; Tuan, T.; Hieu, L.; Giang, B.L. RETRACTED ARTICLE: Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Sci. Rep. 2019, 9, 468. [Google Scholar] [CrossRef]
- Naveed, M.A.; Bilal, R.M.H.; Baqir, M.A.; Bashir, M.M.; Ali, M.M.; Rahim, A.A. Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt. Express 2021, 29, 42911–42923. [Google Scholar] [CrossRef]
- Bilal, R.M.H.; Zakir, S.; Naveed, M.A.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Nanoengineered nickel-based ultrathin metamaterial absorber for the visible and short-infrared spectrum. Opt. Mater. Express 2023, 13, 28–40. [Google Scholar] [CrossRef]
- You, X.; Upadhyay, A.; Cheng, Y.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon. Opt. Lett. 2020, 45, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Jani, C.; Ladumor, M.; Parmar, J.; Guo, T. Graphene-based highly efficient and broadband solar absorber. Opt. Mater. 2019, 96, 109330. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Zhu, L.; Jin, Y.; Liu, H.; Liu, Y. Ultra-broadband absorber based on metal-insulator-metal four-headed arrow nanostructure. Plasmonics 2020, 15, 2153–2159. [Google Scholar] [CrossRef]
- Dang, P.T.; Kim, J.; Nguyen, T.K.; Le, K.Q.; Lee, J.-H. Ultra-broadband metamaterial absorber for high solar thermal energy conversion efficiency. Phys. B Condens. Matter 2021, 620, 413261. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Liu, Y.; Xu, Z.; Yu, Z.; Yu, L.; Chen, L.; Ma, R.; Zhang, J.; Ye, H. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 2018, 8, 21054–21064. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Liu, H.; Liu, Y.; Zhu, L. Numerical study of an ultra-broadband and polarization independence metamaterial cross-shaped fractal absorber. Plasmonics 2020, 15, 1517–1524. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Yang, J.; Hu, X.; Li, X.; Liu, Z.; Liang, Z.; Jiang, X.; Zi, J. Broadband absorption enhancement in anisotropic metamaterials by mirror reflections. Phys. Rev. B 2009, 80, 125103. [Google Scholar] [CrossRef]
- Desai, P.D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 1986, 15, 967–983. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; Wiley-vch: Weinheim, Germany, 2003. [Google Scholar]
- Barceloux, D.G.; Barceloux, D. Nickel. J. Toxicol. Clin. Toxicol. 1999, 37, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, S.A.; Butt, C.R.M.; Elias, M. Nickel laterites: A review. SEG Discov. 2003, 54, 1–18. [Google Scholar] [CrossRef]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, T.; Zhong, Q.; Yan, R.; Huang, X. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR. Nanotechnology 2020, 31, 315202. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Jin, Y.; Zhu, L. Ultra-broadband perfect absorber utilizing a multi-size rectangular structure in the UV-MIR range. Results Phys. 2020, 18, 103336. [Google Scholar] [CrossRef]
Ref. | Material | Multi-Layer Stacking | Number of Layers | Complex Pattern | Wavelength (A > 90%) | Average Absorption |
---|---|---|---|---|---|---|
[25] | Au/SiO2/W/Ti | No | / | Titanium resonator | 167–1926 nm | 93.17% |
[27] | TiN/SiO2/Ti | No | / | cross-shaped | 386–1178 nm | 95% |
[29] | Au/Si/Fe | Yes | 4 | cross-shaped fractal | 400–2000 nm | 96.67% |
[36] | TiN/SiO2/TiO2 | No | / | ellipse | 360–1624 nm | 95.68% |
[37] | Ti/W/SiO2/Ni | Yes | 15 | / | 300–1909 nm | 96% |
[38] | Fe/Si | Yes | 18 | / | 300–3000 nm | 96% |
proposed | Ni/SiO2 | Yes | 8 | / | 499–2348 nm (300–2500 nm) | 96.32% (94.96%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Gao, Z.; Xu, Z.; Zhao, T. Perfect Solar Absorber Based on Four-Step Stacked Metamaterial. Photonics 2023, 10, 1082. https://doi.org/10.3390/photonics10101082
Wang P, Gao Z, Xu Z, Zhao T. Perfect Solar Absorber Based on Four-Step Stacked Metamaterial. Photonics. 2023; 10(10):1082. https://doi.org/10.3390/photonics10101082
Chicago/Turabian StyleWang, Pu, Ziang Gao, Zhengshan Xu, and Tonggang Zhao. 2023. "Perfect Solar Absorber Based on Four-Step Stacked Metamaterial" Photonics 10, no. 10: 1082. https://doi.org/10.3390/photonics10101082
APA StyleWang, P., Gao, Z., Xu, Z., & Zhao, T. (2023). Perfect Solar Absorber Based on Four-Step Stacked Metamaterial. Photonics, 10(10), 1082. https://doi.org/10.3390/photonics10101082