Near-Infrared Laser Methane Remote Monitoring Based on Template Matching Algorithm of Harmonic Signals
Abstract
:1. Introduction
2. Methodology and Experimental Setup
2.1. Concentration Inversion Based on Harmonic Conjoint Analysis
2.2. Template Matching Algorithm for Distorted Harmonic
2.3. Methane Telemetry Sensor System Configuration
3. Results
3.1. Calibration of the Methane Telemetry Sensor System
3.2. Algorithm Experimental Verification
3.3. Detection Limit Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Floerchinger, C.; McKain, K.; Bonin, T.; Peischl, J.; Biraud, S.C.; Miller, C.; Ryerson, T.B.; Wofsy, S.C.; Sweeney, C. Methane emissions from oil and gas production on the North Slope of Alaska. Atmos. Environ. 2019, 218, 116985. [Google Scholar] [CrossRef]
- Scarpelli, T.R.; Jacob, D.J.; Maasakkers, J.D.; Sulprizio, M.P.; Sheng, J.X.; Rose, K.; Romeo, L.; Worden, J.R.; Janssens-Maenhout, G. A global gridded (0.1◦ ×0.1◦) inventory of methane emissions from oil, gas, and coal exploitation based on national reports to the United Nations Framework Convention on Climate Change. Earth Syst. Sci. Data 2020, 12, 563–575. [Google Scholar] [CrossRef]
- Gao, J.; Guan, C.H.; Zhang, B. Why are methane emissions from China’s oil & natural gas systems still unclear? A review of current bottom-up inventories. Sci. Total. Environ. 2022, 807, 151076. [Google Scholar]
- Johnson, D.; Clark, N.; Heltzel, R.; Darzi, M.; Footer, T.L.; Herndon, S.; Thoma, E.D. Methane emissions from oil and gas production sites and their storage tanks in West Virginia. Atmos. Environ. X 2022, 16, 100193. [Google Scholar] [CrossRef]
- Fox, T.A.; Barchyn, T.E.; Risk, D.; Ravikumar, A.P.; Hugenholtz, C.H. A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas. Environ. Res. Lett. 2019, 14, 053002. [Google Scholar] [CrossRef]
- Cheadle, L.C.; Tran, T.; Nyarady, J.F.; Lozo, C. Leak detection and repair data from California’s oil and gas methane regulation show decrease in leaks over two years. Environ. Chall. 2022, 8, 100563. [Google Scholar] [CrossRef]
- Johnson, D.; Heltzel, R. Methane emissions measurements of natural gas components using a utility terrain vehicle and portable methane quantification system. Atmos. Environ. 2016, 144, 1–7. [Google Scholar] [CrossRef]
- Zheng, J.; Xie, P.; Tian, X.; Xu, J.; Li, A.; Ren, B.; Hu, F.; Hu, Z.; Lv, Y.; Zhang, Z.; et al. McPrA-A new gas profile inversion algorithm for MAX-DOAS and apply to 50 m vertical resolution. Sci. Total Environ. 2023, 901, 165828. [Google Scholar] [CrossRef]
- Gao, J.; Li, M.; Zhao, H.; Wu, Y.; Gao, Q.; Wu, X.; Zhang, Y.; Zhang, Y. Study on photodissociation and photoconversion characteristics of CS2 in O2/O3 environment using real-time conversion products obtained by UV-DOAS. J. Environ. Chem. Eng. 2023, 11, 110815. [Google Scholar] [CrossRef]
- Schütze, C.; Lau, S.; Reiche, N.; Sauer, U.; Borsdorf, H.; Dietrich, P. Ground-based Remote Sensing with Open-path Fourier- transform Infrared (OP-FTIR) Spectroscopy for Large-scale Monitoring of Greenhouse Gases. Energy Proce. 2013, 37, 4276–4282. [Google Scholar] [CrossRef]
- Kira, O.; Dubowski, Y.; Linker, R. In-situ open path FTIR measurements of the vertical profile of spray drift from air-assisted sprayers. Biosyst. Eng. 2018, 169, 32–41. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Y.; Shi, P.; Liu, T.; Li, Z.; Luo, S.; Wang, X.; Cao, X.; Ren, B.; Liu, G.; et al. Revealing unconventional host–guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. Light Sci. Appl. 2021, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, T.; Nie, X.; Agarwal, G.S.; Scully, M.O. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light Sci. Appl. 2022, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Hufziger, K.T.; Bykov, S.V.; Asher, S.A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection. Appl. Spectrosc. 2017, 71, 173–185. [Google Scholar] [CrossRef]
- Chirico, R.; Almaviva, S.; Colao, F.; Fiorani, L.; Nuvoli, M.; Schweikert, W.; Schnürer, F.; Cassioli, L.; Grossi, S.; Murra, D.; et al. Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications. Sensors 2016, 16, 8. [Google Scholar] [CrossRef]
- Gulati, K.K.; Gulia, S.; Kumar, N.; Kumar, A.; Kumari, S.; Gambhir, V.; Reddy, M.N. Real-time stand-off detection of improvised explosive materials using time-gated UV-Raman spectroscopy. Pramana-J. Phys. 2019, 92, 20. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, R.; Liu, K.; Yan, J.; Li, Q.; Tang, Z.; Li, X.; Zeng, Q.; Zeng, X. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering. Talanta 2020, 216, 120968. [Google Scholar] [CrossRef]
- Lang, Z.; Qiao, S.; Ma, Y. Fabry-Perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light Adv. Manu. 2023, 4, 23. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Qiao, S.; Yu, X.; Tittel, F.; Spagnolo, V. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Appl. Phys. Lett. 2020, 116, 011103. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express. 2018, 26, 32103–32110. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liang, T.; Qiao, S.; Liu, X.; Lang, Z. Highly Sensitive and Fast Hydrogen Detection Based on LightInduced Thermoelastic Spectroscopy. Ultrafast Sci. 2023, 3, 24. [Google Scholar] [CrossRef]
- Xin, F.; Li, J.; Guo, J.; Yang, D.; Wang, Y.; Tang, Q.; Liu, Z. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS. Sensors 2021, 21, 1722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total Environ. 2023, 893, 164701. [Google Scholar] [CrossRef]
- Liang, W. Standoff detection of backscattered light based on tunable diode laser absorption spectroscopy. Infrared Phys. Techn. 2023, 130, 104586. [Google Scholar] [CrossRef]
- Tian, L.; Sun, J.; Chang, J.; Xia, J.; Zhang, Z.; Kolomenskii, A.A.; Schuessler, H.A.; Zhang, S. Retrieval of gas concentrations in optical spectroscopy with deep learning. Measurement 2021, 182, 109739. [Google Scholar] [CrossRef]
- Sun, J.; Chang, J.; Wang, F.; Zhang, Q.; Wang, Z.; Xie, Y.; Zhang, Z.; Feng, Y. Tuning Efficiency of Distributed Feedback Laser Diode for Wavelength Modulation Spectroscopy. IEEE Sens. J. 2019, 19, 9722–9727. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Li, L.; Wang, Z.; He, L.; Wu, Z.; Du, Z. Simultaneous standoff sensing for methane and hydrogen sulfide using wavelength-modulated laser absorption spectroscopy with non-cooperative target. Sensor Actuat. B-Chem. 2023, 374, 132825. [Google Scholar] [CrossRef]
- Xia, H.; Liu, W.; Zhang, Y.; Kan, R.; Wang, M.; He, Y.; Cui, Y.; Ruan, J.; Geng, H. An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy. Chin. Opt. Lett. 2008, 6, 437–440. [Google Scholar] [CrossRef]
- Dong, L.; Yao, Y.; Zhao, Y.; Cui, N.; Liu, S.; Zhang, H.; Zhang, Y.; Xu, Y. A high-sensitive methane measuring telemetry system based on a direct optical absorption technique. Laser Phys. 2020, 30, 126201. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, N.; Zhang, Y.; Chen, D. Distortion correction method of line shape based on harmonic detection. AIP Adv. 2022, 12, 015008. [Google Scholar] [CrossRef]
- Shen, S.; Li, W.; Wang, M.; Wang, D.; Li, Y.; Li, D. Methane near-infrared laser remote detection under non-cooperative target condition based on harmonic waveform recognition. Infrared Phys. Technol. 2022, 120, 103977. [Google Scholar] [CrossRef]
- Li, G.; Zhao, H.; Li, J.; Liu, Y.; Song, Y.; Zhang, X.; Zhang, Z.; Wu, Y. A near infrared H2S leakage detection system based on WDO-ELM using a digital lock-in amplifier combined with discrete wavelet transform filter. Infrared Phys. Technol. 2023, 128, 104481. [Google Scholar] [CrossRef]
- Zheng, C.; Ye, W.; Huang, J.; Cao, T.; Lv, M.; Dang, J.; Wang, Y. Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique. Sensor Actuat. B-Chem. 2014, 190, 249–258. [Google Scholar] [CrossRef]
- Pang, D.; Li, L.; Ma, L.; Lin, Z.; Liu, P.; Zhou, X. Interference fringe suppression in tunable diode laser absorption spectroscopy based on BPNN. Opt. Commun. 2023, 544, 129630. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, X.; Xu, Z.; Tian, X.; Cheng, G.; Peng, F.; Wang, J. High precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method. Opt. Laser Eng. 2023, 166, 107570. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Zhang, X.; Fang, J.; Zhao, Y. Open-path sensor based on QCL for atmospheric N2O measurement. Results Phys. 2021, 31, 104909. [Google Scholar] [CrossRef]
- Shao, L.; Fang, B.; Zheng, F.; Qiu, X.; He, Q.; Wei, J.; Li, C.; Zhao, W. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser. Spectrochim. Acta A 2019, 222, 117118. [Google Scholar] [CrossRef]
- Yang, H.; Bu, X.; Cao, Y.; Song, Y. A methane telemetry sensor based on near-infrared laser absorption spectroscopy. Infrared Phys. Technol. 2021, 114, 103670. [Google Scholar] [CrossRef]
- Kong, Q.; Wu, Z.; Song, Y. Online detection of external thread surface defects based on an improved template matching algorithm. Measurement 2022, 195, 111087. [Google Scholar] [CrossRef]
- Ma, H.; Chu, R.; Sheng, M.; Yu, Z. Template matching for simple waveforms with low signal-to-noise ratio and its application to icequake detection. Earthq. Sci. 2020, 33, 256–263. [Google Scholar] [CrossRef]
- Mu, D.; Lee, J.; Chen, P. Rapid earthquake detection through GPU-Based template matching. Comput. Geosci-UK 2017, 109, 305–314. [Google Scholar] [CrossRef]
- Shih, H.C.; Yu, K.C. SPiraL Aggregation Map (SPLAM): A new descriptor for robust template matching with fast algorithm. Pattern Recogn. 2015, 48, 1707–1723. [Google Scholar] [CrossRef]
- Na, W.; Sun, K.H.; Jeon, B.C.; Lee, J.; Shin, Y. Event-based micro vibration measurement using phase correlation template matching with event filter optimization. Measurement 2023, 215, 112867. [Google Scholar] [CrossRef]
- Gu, M.; Chen, J.; Mei, J.; Tan, T.; Wang, G.; Liu, K.; Liu, G.; Gao, X. Open-path anti-pollution multi-pass cell-based TDLAS sensor for the online measurement of atmospheric H2O and CO2 fluxes. Opt. Express 2022, 30, 43961–43972. [Google Scholar] [CrossRef]
Gas Cell 1 | Gas Cell 2 | Gas Cell 3 | Gas Cell 4 | Gas Cell 5 | |
---|---|---|---|---|---|
[ppm·m] | |||||
Test 1 | 642.78 | 0 | 156.95 | 0 | 451.87 |
660.53 | 6.87 | 161.49 | 1.25 | 447.79 | |
Test 2 | 679.25 | 0 | 140.18 | 0 | 465.02 |
612.43 | 11.26 | 141.54 | 0 | 468.43 | |
Test 3 | 690.71 | 0 | 156.65 | 0 | 508.75 |
626.64 | 0 | 153.28 | 5.61 | 497.32 | |
Test 4 | 619.77 | 0 | 155.57 | 0 | 467.47 |
699.46 | −2.88 | 162.12 | 0 | 526.71 | |
Test 5 | 634.66 | 0 | 147.27 | 0 | 495.22 |
697.97 | 1.64 | 139.77 | −4.55 | 450.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, D.; Wang, M.; Lv, Y.; Pu, Y. Near-Infrared Laser Methane Remote Monitoring Based on Template Matching Algorithm of Harmonic Signals. Photonics 2023, 10, 1075. https://doi.org/10.3390/photonics10101075
Li Y, Wang D, Wang M, Lv Y, Pu Y. Near-Infrared Laser Methane Remote Monitoring Based on Template Matching Algorithm of Harmonic Signals. Photonics. 2023; 10(10):1075. https://doi.org/10.3390/photonics10101075
Chicago/Turabian StyleLi, Yushuang, Di Wang, Mingji Wang, Yan Lv, and Yu Pu. 2023. "Near-Infrared Laser Methane Remote Monitoring Based on Template Matching Algorithm of Harmonic Signals" Photonics 10, no. 10: 1075. https://doi.org/10.3390/photonics10101075
APA StyleLi, Y., Wang, D., Wang, M., Lv, Y., & Pu, Y. (2023). Near-Infrared Laser Methane Remote Monitoring Based on Template Matching Algorithm of Harmonic Signals. Photonics, 10(10), 1075. https://doi.org/10.3390/photonics10101075