Graphene-Assisted Electromagnetically Induced Transparency-like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation of GELM Biosensor
2.2. Design of the GELM Biosensor
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, B.M.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. Biosensors 2022, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, Y.; Liang, L.; Yao, H.; Qiu, F.; Liu, W. Analysis of Graphene-Based Tunable THz Four-Band Absorption Sensors. Appl. Opt. 2022, 61, 2103–2107. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Lin, H.; Navarro-Cía, M. Recent Progress in Terahertz Metamaterial Modulators. Nanophotonics 2022, 11, 1485–1514. [Google Scholar] [CrossRef]
- Chen, B.; Wu, J.; Li, W.; Zhang, C.; Fan, K.; Xue, Q.; Chi, Y.; Wen, Q.; Jin, B.; Chen, J.; et al. Programmable Terahertz Metamaterials with Non-Volatile Memory. Laser Photonics Rev. 2022, 16, 2100472. [Google Scholar] [CrossRef]
- Yang, J.; Qi, L.M.; Wu, L.Q.; Lan, F.; Lan, C.W.; Tao, X.; Liu, Z.Y. Research Progress of Terahertz Metamaterial Biosensors. Spectrosc. Spectr. Anal. 2021, 41, 1669–1677. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y.-S. Design of Tunable Terahertz Metamaterial Sensor with Single- and Dual-Resonance Characteristic. Nanomaterials 2021, 11, 2212. [Google Scholar] [CrossRef]
- Vafapour, Z.; Dutta, M.; Stroscio, M.A. Sensing, Switching and Modulating Applications of a Superconducting THz Metamaterial. IEEE Sens. J. 2021, 21, 15187–15195. [Google Scholar] [CrossRef]
- Mayani, M.G.; Herraiz-Martinez, F.J.; Domingo, J.M.; Giannetti, R. Resonator-Based Microwave Metamaterial Sensors for Instrumentation: Survey, Classification, and Performance Comparison. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Luo, Z.; Ji, S.; Zhao, J.; Wu, H.; Dai, H. A Multiband Metamaterial Absorber for GHz and THz Simultaneously. Results Phys. 2021, 30, 104893. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Yang, T.; Chen, L.; Wang, Q.; Zhou, J. Tunable Metamaterial Absorber Based on Resonant Strontium Titanate Artificial Atoms. J. Mater. Sci. Technol. 2021, 62, 249–253. [Google Scholar] [CrossRef]
- Kindness, S.J.; Almond, N.W.; Michailow, W.; Wei, B.; Delfanazari, K.; Braeuninger-Weimer, P.; Hofmann, S.; Beere, H.E.; Ritchie, D.A.; Degl’Innocenti, R. A Terahertz Chiral Metamaterial Modulator. Adv. Opt. Mater. 2020, 8, 2000581. [Google Scholar] [CrossRef]
- Chiang, W.F.; Silalahi, H.M.; Chiang, Y.C.; Hsu, M.C.; Zhang, Y.S.; Liu, J.H.; Yu, Y.; Lee, C.R.; Huang, C.Y. Continuously Tunable Intensity Modulators with Large Switching Contrasts Using Liquid Crystal Elastomer Films That Are Deposited with Terahertz Metamaterials. Opt. Express 2020, 28, 27676–27687. [Google Scholar] [CrossRef] [PubMed]
- Forouzeshfard, M.R.; Ghafari, S.; Vafapour, Z. Solute Concentration Sensing in Two Aqueous Solution Using an Optical Metamaterial Sensor. J. Lumin. 2021, 230, 117734. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Z.; Liang, L.; Yan, X.; Wei, D.; Song, X.; Zhang, H.; Lu, Y.; Wang, M.; Yao, J. Sensitive Detection of the Concentrations for Normal Epithelial Cells Based on Fano Resonance Metamaterial Biosensors in Terahertz Range. Appl. Opt. 2019, 58, 6268–6273. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Z.; Liu, W.; Cheng, H.; Tian, J. From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Adv. Mater. 2019, 31, e1802458. [Google Scholar] [CrossRef]
- Cong, L.; Singh, R. Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams. Adv. Mater. Deerfield Beach Fla 2020, 32, e2001418. [Google Scholar] [CrossRef]
- Dong, T.; Li, S.; Manjappa, M.; Yang, P.; Zhou, J.; Kong, D.; Quan, B.; Chen, X.; Ouyang, C.; Dai, F.; et al. Nonlinear THz-Nano Metasurfaces. Adv. Funct. Mater. 2021, 31, 2100463. [Google Scholar] [CrossRef]
- Dănilă, O.; Mănăilă-Maximean, D.; Bărar, A.; Loiko, V.A. Non-Layered Gold-Silicon and All-Silicon Frequency-Selective Metasurfaces for Potential Mid-Infrared Sensing Applications. Sensors 2021, 21, 5600. [Google Scholar] [CrossRef]
- Askari, M.; Bahadoran, M. A Refractive-Index-Based Microwave Sensor Based on Classical Electromagnetically Induced Transparency in Metamaterials. Optik 2022, 253, 168589. [Google Scholar] [CrossRef]
- Li, G.; Yang, J.; Zhang, Z.; Wen, K.; Tao, Y.; Han, Y.; Zhang, Z. Double Spectral Electromagnetically Induced Transparency Based on Double-Bar Dielectric Grating and Its Sensor Application. Appl. Sci. 2020, 10, 3033. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Fang, S. Dielectric Characterization of Liquid Mixtures Using EIT-like Transmission Window. IEEE Sens. J. 2021, 21, 17859–17867. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Zhang, Z.; Liang, L.; Wei, D.; Wang, M.; Zhang, M.; Wang, T.; Liu, L.; Xie, J.; et al. The Terahertz Electromagnetically Induced Transparency-like Metamaterials for Sensitive Biosensors in the Detection of Cancer Cells. Biosens. Bioelectron. 2019, 126, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liang, L.; Zhang, Z.; Xin, Y.; Wei, D.; Song, X.; Zhang, H.; Lu, Y.; Wang, M.; Zhang, M.; et al. Electromagnetically Induced Transparency-like Metamaterials for Detection of Lung Cancer Cells. Opt. Express 2019, 27, 19520–19529. [Google Scholar] [CrossRef]
- Zhang, J.; Mu, N.; Liu, L.; Xie, J.; Feng, H.; Yao, J.; Chen, T.; Zhu, W. Highly Sensitive Detection of Malignant Glioma Cells Using Metamaterial-Inspired THz Biosensor Based on Electromagnetically Induced Transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef]
- Lin, S.; Xu, X.; Hu, F.; Chen, Z.; Wang, Y.; Zhang, L.; Peng, Z.; Li, D.; Zeng, L.; Chen, Y.; et al. Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, F.; Lang, T.; Liu, J.; Hong, Z.; Qin, J. All-Metal Terahertz Metamaterial Biosensor for Protein Detection. Nanoscale Res. Lett. 2021, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Shen, J. Fingerprint Extraction from Interference Destruction Terahertz Spectrum. Opt. Express 2010, 18, 21798–21803. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Yu, B.; Zhang, C. Terahertz Spectroscopic Investigation of Four Kinds of Vitamins. J. Appl. Phys. 2009, 106, 104702. [Google Scholar] [CrossRef]
- Jia, Z.; Huang, L.; Su, J.; Tang, B. Tunable Electromagnetically Induced Transparency-Like in Graphene Metasurfaces and Its Application as a Refractive Index Sensor. J. Light. Technol. 2021, 39, 1544–1549. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Huang, T.-J.; Yin, L.-Z.; Han, F.-Y.; Liu, P.-K. High Sensitivity Terahertz Biosensor Based on Goos-Hänchen Effect in Graphene. IEEE Photonics J. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Qasymeh, M. Graphene-Assisted Infrared Plasmonic Metamaterial Absorber for Gas Detection. Results Phys. 2021, 23, 103986. [Google Scholar] [CrossRef]
- Veeraselvam, A.; Mohammed, G.N.A.; Savarimuthu, K.; Anguera, J.; Paul, J.C.; Krishnan, R.K. Refractive Index-Based Terahertz Sensor Using Graphene for Material Characterization. Sens. Basel. 2021, 21, 8151. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.-T.; Ying, Y. Terahertz Biosensing with a Graphene-Metamaterial Heterostructure Platform. Carbon 2019, 141, 247–252. [Google Scholar] [CrossRef]
- Yao, H.; Yan, X.; Yang, M.; Yang, Q.; Liu, Y.; Li, A.; Wang, M.; Wei, D.; Tian, Z.; Liang, L. Frequency-Dependent Ultrasensitive Terahertz Dynamic Modulation at the Dirac Point on Graphene-Based Metal and All-Dielectric Metamaterials. Carbon 2021, 184, 400–408. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, C.; Huang, Y.; Huang, K.; Wang, Y.; Xu, W.; Xie, L.; Ying, Y. Label-Free Terahertz Microfluidic Biosensor for Sensitive DNA Detection Using Graphene-Metasurface Hybrid Structures. Biosens. Bioelectron. 2021, 188, 113336. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Hayat, H.; Abbas, A.; Narayan, R.J. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. Biosensors 2022, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Abbas, A.; Narayan, R.J. Graphene Nanocomposites for Transdermal Biosensing. WIREs Nanomed. Nanobiotechnology 2021, 13, e1699. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choe, J.-H.; Kim, C.; Bae, S.; Kim, J.-S.; Park, Q.-H.; Seo, M. Graphene Assisted Terahertz Metamaterials for Sensitive Bio-Sensing. Sens. Actuators B Chem. 2020, 310, 127841. [Google Scholar] [CrossRef]
- Yao, H.; Sun, Z.; Yan, X.; Yang, M.; Liang, L.; Ma, G.; Gao, J.; Li, T.; Song, X.; Zhang, H.; et al. Ultrasensitive, Light-Induced Reversible Multidimensional Biosensing Using THz Metasurfaces Hybridized with Patterned Graphene and Perovskite. Nanophotonics 2022, 11, 1219–1230. [Google Scholar] [CrossRef]
- Fu, X.; Sheng, L.; Yu, Y.; Ma, M.; Cai, Z.; Huang, X. Rapid and Universal Detection of Ovalbumin Based on N,O,P-Co-Doped Carbon Dots-Fluorescence Resonance Energy Transfer Technology. Sens. Actuators B Chem. 2018, 269, 278–287. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; Zhang, W.; Liang, S.; Wu, H.; Jiang, L.; Li, X. Out-of-Plane Focusing and Manipulation of Terahertz Beams Based on a Silicon/Copper Grating Covered by Monolayer Graphene. Opt. Express 2017, 25, 16867–16878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Cao, Y.; Liu, Y.; Zhang, H. Graphene Induced Tunable and Polarization-Insensitive Broadband Metamaterial Absorber. Opt. Commun. 2017, 382, 281–287. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.; Chen, C.-F.; Geng, B.; Girit, C.; Zhang, Y.; Hao, Z.; Bechtel, H.A.; Martin, M.; Zettl, A.; Crommie, M.F.; et al. Drude Conductivity of Dirac Fermions in Graphene. Phys. Rev. B 2011, 83, 165113. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhang, Y.; Duan, X.; Balandin, A.A.; Wang, K.L. Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications. Proc. IEEE 2013, 101, 1670–1688. [Google Scholar] [CrossRef] [Green Version]
- Bardarson, J.H.; Tworzydlo, J.; Brouwer, P.W.; Beenakker, C.W. One-Parameter Scaling at the Dirac Point in Graphene. Phys. Rev. Lett. 2007, 99, 106801. [Google Scholar] [CrossRef] [Green Version]
- Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhang, Z.; Yang, M.; Bing, P.; Yan, X.; Yang, Q.; Wei, D.; Liu, L.; Liang, L.; Yao, J. Time-Frequency Double Domain Resolving by Electromagnetically Induced Transparency Metasensors for Rapid and Label-Free Detection of Cancer Biomarker Midkine. Opt. Lasers Eng. 2021, 142, 106566. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Zhou, R.; Wang, Q.; Yin, J.; Kono, J.; Ping, J.; Xie, L.; Ying, Y. Metamaterial-Free Flexible Graphene-Enabled Terahertz Sensors for Pesticide Detection at Bio-Interface. ACS Appl. Mater. Interfaces 2020, 12, 44281–44287. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Shi, Y.; Zhu, Y.; Zhang, D.; Hong, Z.; Feng, X. Significant Sensing Performance of an All-Silicon Terahertz Metasurface Chip for Bacillus Thuringiensis Cry1Ac Protein. Photonics Res. 2022, 10, 740. [Google Scholar] [CrossRef]
- Yan, X.; Li, T.; Ma, G.; Gao, J.; Wang, T.; Yao, H.; Yang, M.; Liang, L.; Li, J.; Li, J.; et al. Ultra-Sensitive Dirac-Point-Based Biosensing on Terahertz Metasurfaces Comprising Patterned Graphene and Perovskites. Photonics Res. 2022, 10, 280. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, W.; Lin, S.; Chen, Z.; Zeng, L.; Hu, F. Aptamer HB5 Modified Terahertz Metasurface Biosensor Used for Specific Detection of HER2. Sens. Actuators B Chem. 2022, 355, 131337. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Yan, X.; Li, Z.; Xu, C. Active Modulation of Electromagnetically Induced Transparency Analogue in Terahertz Hybrid Metal-Graphene Metamaterials. Carbon 2018, 126, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Arigong, B.; Ren, H.; Zhou, M.; Shao, J.; Lu, M.; Chai, Y.; Lin, Y.; Zhang, H. Tuneable Complementary Metamaterial Structures Based on Graphene for Single and Multiple Transparency Windows. Sci. Rep. 2014, 4, 6128. [Google Scholar] [CrossRef] [PubMed]
Material | Analytes | LoD | Sensing Type | Reference |
---|---|---|---|---|
MM | MDK | 500 ng/mL | Amplitude + Frequency | [48] |
Graphene + PI | CMM | 130 ng/mL | Amplitude | [49] |
Graphene + MM | Fructose | 100 ng/mL | Amplitude | [35] |
Graphene + MM | CMM | 20 ng/mL | Amplitude | [35] |
MM + Si | BTP | 10 ng/mL | Amplitude + Frequency | [50] |
Graphene + MM | WP | 6.25 ng/mL | Amplitude + Frequency + Phase | [39] |
Graphene + MM +PI | Sericin | 780 pg/mL | Amplitude + Phase | [51] |
MM + SiO2 + Si | HER2 | 100 pg/mL | Amplitude + Frequency | [52] |
Graphene + MM + PI | Ovalbumin | 8.63 pg/mL | Amplitude + Frequency + Phase | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Bing, P.; Yan, X.; Yao, H.; Liang, L.; Li, Z.; Wang, Z.; Hu, X.; Wang, M.; Yao, J. Graphene-Assisted Electromagnetically Induced Transparency-like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin. Photonics 2023, 10, 67. https://doi.org/10.3390/photonics10010067
Xu R, Bing P, Yan X, Yao H, Liang L, Li Z, Wang Z, Hu X, Wang M, Yao J. Graphene-Assisted Electromagnetically Induced Transparency-like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin. Photonics. 2023; 10(1):67. https://doi.org/10.3390/photonics10010067
Chicago/Turabian StyleXu, Ruochen, Pibin Bing, Xin Yan, Haiyun Yao, Lanju Liang, Zhenhua Li, Ziqun Wang, Xiaofei Hu, Meng Wang, and Jianquan Yao. 2023. "Graphene-Assisted Electromagnetically Induced Transparency-like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin" Photonics 10, no. 1: 67. https://doi.org/10.3390/photonics10010067
APA StyleXu, R., Bing, P., Yan, X., Yao, H., Liang, L., Li, Z., Wang, Z., Hu, X., Wang, M., & Yao, J. (2023). Graphene-Assisted Electromagnetically Induced Transparency-like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin. Photonics, 10(1), 67. https://doi.org/10.3390/photonics10010067