Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region
Abstract
:1. Introduction
2. Design Considerations and Sensing Mechanism
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsuruda, K.; Fujita, M.; Nagatsuma, T. Extremely low-loss terahertz waveguide based on photonic crystal slab. Opt. Express 2015, 23, 31977–31990. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Anower, S.; Islam, N. Terahertz sensing based on photonic crystal fibers. In Terahertz Technology; You, B., Lu, J.U., Eds.; Intech Open: London, UK, 2021. [Google Scholar] [CrossRef]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.A.; Obayya, S.S.A. Highly Sensitive Terahertz Metamate-rial Sensor. IEEE Sens. J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Areed, N.F.F.; Fakharany, A.E.; Hameed, M.F.O.; Obayya, S.S.A. Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt Quant Electron. 2017, 49, 45. [Google Scholar] [CrossRef]
- Ibrahim, M.S.S.; El-Okr, M.M.; Hamed, M.K.G.; Obayya, S.S.A.; Hameed, M.F.O. Ultracompact tunable bifunctional XOR and XNOR photonic crystal logic gates. Opt. Eng. 2020, 59, 027106. [Google Scholar] [CrossRef]
- Parandin, F.; Heidari, F.; Rahimi, Z.; Olyaee, S. Two-Dimensional photonic crystal Biosensors: A review. Opt. Laser Technology. 2021, 144, 107397. [Google Scholar] [CrossRef]
- Parandin, F.; Heidari, F.; Aslinezhad, M.; Parandin, M.M.; Roshani, S.; Roshani, S. Design of 2D photonic crystal biosensor to detect blood components. Opt Quant. Electron. 2022, 54, 618. [Google Scholar] [CrossRef]
- Olyaee, S.; Najafgholinezhad, S. A High Quality Factor and Wide Measurement Range Biosensor Based on Photonic Crystal Nanocavity Resonator. Sens. Lett. 2013, 11, 483–488. [Google Scholar] [CrossRef]
- Ibrahim, M.S.S.; Hamed, M.K.G.; El-Okr, M.M.; Obayya, S.S.A.; Hameed, M.F.O. Highly sensitive photonic crystal gamma ray dosimeter. Opt. Quantum Electron. 2021, 53, 348. [Google Scholar] [CrossRef]
- Ibrahim, M.S.S.; Tarek, M.; Obayya, S.S.A.; Hameed, M.F.O. Highly Sensitive 1D Photonic Crystal Biosensor. In Proceedings of the 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Canada, 1–5 August 2021. [Google Scholar]
- Azzam, S.I.; Hameed, M.F.O.; Shehata, R.E.A.; Heikal, A.M.; Obayya, S.S.A. Multichannel photonic crystal fiber surface plasmon resonance-based sensor. Opt. Quantum Electron. 2016, 48, 142. [Google Scholar] [CrossRef]
- Fundamentals and Applications of Nanophotonics, 1st ed.; Woodhead Publishing: Sawston, UK, 2016. [CrossRef]
- Hossain, M.B.; Podder, E. Design and investigation of PCF-based blood components sensor in terahertz regime. Appl. Phys. A 2019, 125, 861. [Google Scholar] [CrossRef]
- Rabeea, A.S.H.; Hameed, M.F.O.; Heikal, A.M.; Obayya, S.S.A. Highly sensitive photonic crystal fiber gas sen-sor. Optik 2019, 188, 78–86. [Google Scholar] [CrossRef]
- Azab, M.Y.; Hameed, M.F.O.; El-Hefnawy, S.M.; Obayya, S.S.A. Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer- demultiplexer. IET Optoelectron. 2015, 10, 21–27. [Google Scholar] [CrossRef]
- Hameed, M.F.O.; Heikal, A.M.; Younis, B.M.; Abdelrazzak, M.; Obayya, S.S.A. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter. Opt. Express 2015, 23, 7007–7020. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yu, L.; Jiaoqi, H.; Guorong, H.; Yang, Z.; Weiling, F. Application of terahertz spectroscopy in biomolecule detection. Front. Lab. Med. 2018, 2, 127–133. [Google Scholar] [CrossRef]
- Bulbul, A.A.M.; Rashed, A.N.Z.; El-Hageen, H.M.; Alatwi, A.M. Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel. Alex. Eng. J. 2021, 60, 5419–5430. [Google Scholar] [CrossRef]
- Ekhlasur Rahaman, M.; Bellal Hossain, M.; Shekhar Mondal, H.; Saha, R.; Mahbub Hossain, M.; Shamim Ahsan, M. Highly sensitive photonic crystal fiber liquid sensor in terahertz frequency range. Mater. Today Proc. 2020, 43, 3815–3820. [Google Scholar] [CrossRef]
- Bulbul, A.A.M.; Jibon, R.H.; Biswas, S.; Pasha, S.T.; Sayeed, M.A. Photonic crystal fiber-based blood components detection in THz regime: Design and simulation. Sens. Int. 2021, 2, 100081. [Google Scholar] [CrossRef]
- Islam, M.R.; Iftekher, A.N.M.; Mou, F.A.; Rahman, M.M.; Bhuiyan, M.I.H. Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection. Appl. Phys. A 2021, 127, 109. [Google Scholar] [CrossRef]
- Ramachandran, A.; Babu, P.R.; Senthilnathan, K. Design of a terahertz chemical sensor using a dual steering-wheel microstructured photonic crystal fiber. Photonics Nanostruct. Fundam. Appl. 2021, 46, 100952. [Google Scholar] [CrossRef]
- Jibon, R.H.; Ahmed, M.; Rahaman, M.E.; Hasan, M.K.; Shaikh, M.M.; Tooshil, A. Nicotine Sensing by Photonic Crystal Fiber in THz Regime. In Proceedings of the International Conference on Robotics, Electrical and Signal Processing Techniques, Dhaka, Bangladesh, 5–7 January 2021. [Google Scholar] [CrossRef]
- Podder, E.; Hossain, M.B.; Ahmed, K. Photonic crystal fiber for milk sensing. Sens. Bio.-Sens. Res. 2022, 38, 100534. [Google Scholar] [CrossRef]
- Porter, M.L.; Dennis, B.L. Hyperbilirubinemia in the term newborn. Am. Fam. Phys. 2022, 65, 599–606. [Google Scholar]
- Rocher, S.P.; Kobos, R. Jaundice in the Adult Patient. Am. Fam. Phys. 2004, 69, 299–304. [Google Scholar]
- Suh, S.; Cho, Y.R.; Park, M.K.; Kim, D.K.; Cho, N.H.; Lee, M.K. Relationship between serum bilirubin levels and cardiovascular disease. PLoS ONE 2018, 13, e0193041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieffer, K.M.; Bruffy, S.M.; Rauscher, R.; Koltun, W.A.; Yochum, G.S.; Gallagher, C.J. Reduced total serum bilirubin levels are associated with ulcerative colitis. PLoS ONE 2017, 12, e0179267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wusthoff, C.J.; Leo, I.M. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin. Fetal Neonatal Med. 2017, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, C.; Arnolda, G.; Boo, N.Y.; Iskander, I.F.; Okolo, A.A.; Rohsiswatmo, R.; Coda Zabetta, C.D. Neonatal Jaundice in Low- and Middle-Income Countries: Lessons and Future Directions from the 2015 Don Ostrow Trieste Yellow Retreat. Neonatology 2016, 110, 172–180. [Google Scholar] [CrossRef]
- Mostafa, M.A.; Kamal, N.M.; Eltaher, S.; Hamed, Y.; Abdelaziz, H.; Abdelghany, W.; Sherief, L.M. Knowledge of Neonatal Hyperbilirubinemia Among Primary Health Care Physicians: A Single-Center Experience. Clin. Med. Insights Pediatr. 2019, 13, 1179556518824375. [Google Scholar] [CrossRef] [Green Version]
- El Meliegy, E.H.K.; El Sabbagh, M.H. Etiology of developmental delay in Egyptian children. Int. J. Child Neuropsychiatr. 2004, 1, 2919–2940. [Google Scholar]
- Obayya, S.S.A. Efficient finite-element-based time-domain beam propagation analysis of optical integrated circuits. IEEE J. Quantum Electron 2004, 40, 591–595. [Google Scholar] [CrossRef]
- COMSOL Multiphysics 6.1; COMSOL Inc.: Stockholm, Sweden, 2022; Available online: https://www.comsol.com (accessed on 1 January 2021).
- Yang, T.; Ding, C.; Ziolkowski, R.W.; Guo, Y.J. A terahertz (THz) single-polarization-single-mode (SPSM) photonic crystal fiber (PCF). Materials 2019, 12, 2442. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, J.; Zhang, W.; Grischkowsky, D. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 2004, 21, 1379. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Demchenko, P.; Khodzitsky, M.K.; Kononova, Y.; Babenko, A.; Grineva, E. The Influence of Bilirubin and Creatinine on the Refractive Index of Whole Blood in Terahertz Frequency Range: A Qualitative Analysis. In Proceedings of the Optics in Health Care and Biomedical Optics VIII, Beijing, China, 23 October 2018. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Ma, S.; Wu, X.; Yang, W.; Zhang, W.; Li, X. Quantify Glucose Level in Freshly Diabetic’s Blood by Terahertz Time-Domain Spectroscopy. J. Infrared Milli Terahz Waves 2018, 39, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Nielsen, K.; Rasmussen, H.K.; Jepsen, P.U.; Bang, O. Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 2012, 20, 29507–29517. [Google Scholar] [CrossRef] [Green Version]
- Katyba, G.M.; Zaytsev, K.I.; Chernomyrdin, N.V.; Shikunova, I.A.; Komandin, G.A.; Anzin, V.B.; Lebedev, S.P.; Spektor, I.E.; Karasik, V.E.; Yurchenko, S.O.; et al. Sapphire Photonic Crystal Waveguides for Terahertz Sensing in Aggressive Environments. Adv. Opt. Mater. 2018, 6, 1800573. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; Santos, E.M.D.; Cruz, C.H.B.; Matos, C.G.D.; Daniel, S.; Ferreira, D.S. Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications. Opt. Express 2006, 14, 8403–8412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Al Naser, A.M.; Jaba, F.Z.; Anzum, F.; Iftekher, A.N.M.; Khan, M.R.H.; Nishat, M.M. Design of a hexagonal outlined porous cladding with vacant core photonic crystal fibre biosensor for cyanide detection at THz regime. IET Optoelectron. 2022, 13, 160–173. [Google Scholar] [CrossRef]
- Huang, Y.; Xua, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.M.; Huang, Y.W.; Yeh, S.M.; Cheng, W.H.; Lin, C.H. Liquid Crystal Modified Photonic Crystal Fiber (LC-PCF) Fabricated with an SU-8 Photoresist Sealing Technique for Electrical Flux Measurement. In Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 24–28 January 2010. [Google Scholar] [CrossRef]
- Bowden, B.; Harrington, J.A.; Mitrofanov, O. Silver/Polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 2007, 32, 2945–2947. [Google Scholar] [CrossRef]
- Salamin, Y.; Chelmus, I.C.; Fedoryshyn, Y.; Heni, W.; Elder, D.L.; Dalton, L.R.; Faist, J.; Leuthold, J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 2009, 10, 5550. [Google Scholar] [CrossRef] [Green Version]
- Rahman, B.M.A.; Agrawal, A. Finite Element Modeling Methods for Photonics, 1st ed.; Artech House: Boston, MA, USA, 2013. [Google Scholar]
- Obayya, S.S.A.; Azizur Rahman, B.M.; El-Mikati, H.A. New Full-Vectorial Numerically Efficient Propagation Algorithm Based on the Finite Element Method. J. Light. Technol. 2000, 18, 409–415. [Google Scholar] [CrossRef]
- Islam, A.; Rakibul, M.; Ahmed, I.; Al, M.; Fariha, N.; Fatema, A.; Jaba, Z. Square structured photonic crystal fiber based THz sensor design for human body protein detection. J. Comput Electron. 2020, 20, 377–386. [Google Scholar] [CrossRef]
- Sultana, J.; Islam, S.; Faisal, M.; Rakibul, M.; Ng, B.W.; Ebendorff-heidepriem, H.; Abbott, D. Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt. Commun. 2018, 407, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Mou, F.A.; Rahman, M.M.; Islam, M.R.; Bhuiyan, M.I.H. Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 2020, 29, 100346. [Google Scholar] [CrossRef]
- Habib, A.; Anower, S.; Abdulrazak, L.F.; Reza, S. Hollow core photonic crystal fiber for chemical identification in terahertz regime. Opt. Fiber Technol. 2019, 52, 101933. [Google Scholar] [CrossRef]
- Tahhan, S.R.; Aljobouri, H.K. Sensing of Illegal Drugs by Using Photonic Crystal Fiber in Terahertz Regime. J. Opt. Commun. 2020. [Google Scholar] [CrossRef]
- Hasanuzzaman, G.K.M.; Rana, S.; Habib, S. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime. IEEE Photonics Technol. Lett. 2016, 28, 899–902. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Ren, L.; Chen, N.; Zhou, C. Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation. Opt. Commun. 2013, 295, 257–261. [Google Scholar] [CrossRef]
- Habib, A.; Anower, S.; Haque, I. Highly sensitive hollow core spiral fiber for chemical spectroscopic applications. Sens. Int. 2020, 1, 100011. [Google Scholar] [CrossRef]
- Arif, M.F.H.; Ahmed, K.; Asaduzzaman, S.; Azad, M. Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens. 2016, 6, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Hossain, B.; Podder, E.; Bulbul, A.A.; Mondal, H.S. Optical Fiber Technology Bane chemicals detection through photonic crystal fiber in THz regime. Opt. Fiber Technol. 2020, 54, 102102. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sen, S.; Hossain, M.M. Design of a chemical sensing circular photonic crystal fiber with high relative sensitivity and low confinement loss for terahertz (THz) regime. Optik. 2020, 222, 165359. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mou, F.A.; Bhuiyan, M.I.H.; Islam, M.R. Refractometric THz Sensing of Blood Components in a Photonic Crystal Fiber Platform. Braz. J. Phys. 2022, 52, 47. [Google Scholar] [CrossRef]
- Podder, E.; Hossain, B.; Rahaman, E.; Bulbul, A.A.; Ahmed, K. Ensing and Bio-Sensing Research Design and optimization of terahertz blood components sensor using photonic crystal fiber. Sens. Bio.-Sens. Res. 2020, 30, 100386. [Google Scholar] [CrossRef]
- Habib, M.A.; Vera, E.R.; Aristizabal, J.V.; Anower, M.S. Numerical Modeling of a Rectangular Hollow-Core Waveguide for the Detection of Fuel Adulteration in Terahertz Region. Fibers 2020, 8, 63. [Google Scholar] [CrossRef]
- Jibon, R.H.; Biswas, S.; Nira, N.F.I. Poisonous chemical detection in the THz regime using PCF: Design and numerical investigation. J. Opt. 2021, 50, 671–680. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sen, S. Design and Performance Improvement of Optical Chemical Sensor Based Photonic Crystal Fiber (PCF) in the Terahertz (THz) Wave Propagation. Silicon 2020, 13, 3879–3887. [Google Scholar] [CrossRef]
- Sultana, J.; Islam, M.S.; Dinovitser, A.; Brian, W.-H.N.; Abbott, D. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt. Commun. 2018, 413, 242–248. [Google Scholar] [CrossRef]
- Ultana, J.A.S.; Slam, M.D.S.A.I. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 2018, 57, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.M.D.; Ng, A.K.L.; Heidepriem, H. E.Ultrasimplifed Single-Step Fabrication of Microstructured Optical Fiber. Sci. Rep. 2020, 10, 9678. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.E.; Jibon, R.H.; Mondal, H.S.; Hossain, M.B.; Bulbul, A.A.M.; Saha, R. Design and optimization of a PCF-based chemical sensor in THz regime. Sens. Bio-Sens. Res. 2021, 32, 100422. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kamruzzaman, M.M.; Sen, S.; Azad, M.M.; Hossain Mollah, M.S. Hexahedron core with sensor based photonic crystal fiber: An approach of design and performance analysis. Sens. Bio-Sens. Res. 2021, 32, 100426. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, P.; Jindal, P. Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt. Quantum Electron 2021, 53, 165. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.R.; Siraz, S.; Rahman, M.; Anzum, M.S.; Noor, F. Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk. Appl. Phys. A 2021, 127, 311. [Google Scholar] [CrossRef] [PubMed]
- Jibon, R.H.; Rahaman, M.K.; Alahe, M.A. Detection of primary chemical analytes in the THz regime with photonic crystal fiber. Sens. Bio-Sens. Res. 2021, 33, 100427. [Google Scholar] [CrossRef]
- Jibon, R.H.; Ahmed, M.; Abd-Elnaby, M.; Rashed, A.N.Z.; Eid, M.M.A. Design mechanism and performance evaluation of photonic crystal fiber (PCF)-based sensor in the THz regime for sensing noxious chemical substrates of poultry feed. Appl. Phys. A 2022, 128, 169. [Google Scholar] [CrossRef]
- Bulbul, A.A.M.; Hossain, M.B.; Dutta, R.; Hassan, M. Zeonex-based Tetra-rectangular Core-photonic Crystal Fiber for NaCl Detection. Nanosci. Nanotechnol. Asia 2021, 11, 112–120. [Google Scholar] [CrossRef]
- Hossain, M.S.; Faruq, M.A.; Rana, M.M.; Sen, S.; Haque, M.D.; Azad, M.M. Sensitivity analysis for detecting chemi-cals by the optical chemical sensor based Photonic Crystal Fiber (PCF) in the Terahertz (THz) regime. Phys Scr. 2021, 96, 125121. [Google Scholar] [CrossRef]
- Suhaimi, N.A.N.B.; Yakasai, I.K.; Abas, E.; Kaijage, S.; Begum, F. Modelling and simulation of novel liquid-infiltrated PCF biosensor in Terahertz frequencies. IET Optoelectron. 2020, 14, 411–416. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hussain, N.; Hossain, Z.; Zaman, M.S.; Rangon, M.N.H.; Al-Shafi, M.A.; Sen, S.; Azad, M.M. Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime. Sens. Bio-Sens. Res. 2022, 35, 100469. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, P.; Xu, Q.; Cao, L.; Jones, A.; Li, K.; Copner, N.; Gong, Y. Terahertz Sensor via Ultralow-Loss Dispersion-Flattened Polymer Optical Fiber: Design and Analysis. Materials 2021, 14, 4921. [Google Scholar] [CrossRef]
- Lu Xue, L.; Yani, Z.; Yuyu, Z. Terahertz Detection of Chemical Analytes Using a Hollow-Core Photonic Crystal Fiber Sensor. In Proceedings of the 2019 International Conference on Optical Instruments and Technology: IRMMW-THz Technologies and Applications, Beijing, China, 12 March 2020. [Google Scholar] [CrossRef]
- Bulbul, A.A.M.; Jibon, R.H.; Das, S.K.; Roy, T.; Saha, A.; Hossain, M.B. PCF Based Formalin Detection by Exploring the Optical Properties in THz Regime. Nanosci. Nanotechnol. Asia 2020, 11, 314–321. [Google Scholar] [CrossRef]
- Ahmed, K.; Paul, B.K.; Ahmed, F.; Jabin, M.A.; Uddin, M.S. Numerical demonstration of triangular shaped photonic crystal fibre-based biosensor in the Terahertz range. IET. Opt. Electron. 2021, 15, 1. [Google Scholar] [CrossRef]
- Sen, S.; Al-Shafi, A.; Sikder, A.S.; Hossain, S.; Azad, M.M. Zeonex based decagonal photonic crystal fiber (D-PCF) in the terahertz (THz) band for chemical sensing applications. Sens. Bio-Sens. Res. 2021, 31, 100393. [Google Scholar] [CrossRef]
- Asaduzzaman, S.; Ahmed, K. Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss. Opt. Appl. 2017, 47, 41–49. [Google Scholar] [CrossRef]
- Anik, H.K.; Mahmud, S.; Chakma, P.; Talukder, H.; Chakrabarti, K.; Biswa, S.K. A Highly Sensitive and Ultra-Low Loss Photonic Crystal Fiber-Based Gas and Chemical Sensor. In Proceedings of the 3rd International Conference on Communication, Devices and Computing, 1st ed.; Skdar, B., Maity, S.P., Samanta, J., Roy, A., Eds.; Springer: Singapore, 2021; Volume 851, pp. 33–34. [Google Scholar]
- Abbaszadeh, A.; Makouei, S.; Meshgini, S. Highly sensitive triangular photonic crystal fiber sensor design applicable for gas detection. Adv. Electromagn. 2021, 10, 1–5. [Google Scholar] [CrossRef]
- Leon, M.J.B.M.; Abedin, S.; Kabir, M.A. A photonic crystal fiber for liquid sensing application with high sensitivity, birefringence and low confinement loss. Sens. Int. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Makouei, S.; Meshgini, S. New hybrid photonic crystal fiber gas sensor with high sensitivity for ammonia gas detection. Can. J. Phys. 2022, 100, 129–137. [Google Scholar] [CrossRef]
- Doumas, B.T.; Perry, B.W.; Sasse, E.A.; Straumfjord, J.V. Standardization in Bilirubin Assays: Evaluation of Selected Methods and Stability of Bilirubin Solutions. Clin. Chem. 1973, 19, 984–993. [Google Scholar] [CrossRef]
- Li, X.; Rosenzweig, Z. A fiber optic sensor for rapid analysis of bilirubin in serum. Anal. Chim. Acta 1997, 353, 263–273. [Google Scholar] [CrossRef]
- Bergmeyer, H.U.; Horder, M.; Rej, R. Approved recommendations on IFCC methods of measurement of catalytic concentration of enzymes. J. Clin. Chem. Clin. Biochem. 1986, 24, 481–489. [Google Scholar]
- Jayasree, M.; Aparna, R.S.; Anjana, R.R.; Devi, J.S.A.; John, N.; Abha, K.; Manikandan, A.; George, S. Fluorescence turn on detection of bilirubin using Fe (III) modulated BSA stabilized copper nanocluster; A mechanistic perception. Anal. Chim. Acta 2018, 1031, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Narwal, V.; Batra, B.; Kalra, V.; Jalandra, R.; Ahlawat, J.; Hooda, R.; Sharma, M.; Rana, J.S. Bilirubin detection by different methods with special emphasis on biosensing: A review. Sens. Bio-Sens. Res. 2021, 33, 100436. [Google Scholar] [CrossRef]
- Thangamuthu, M.; Gabriel, W.E.; Santschi, C.; Martin, O.J.F. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene. Sensors 2018, 18, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, M.; Manap, H. The optimal absorption of bilirubin using an optical fiber sensor. ARPN J. Eng. Appl. Sci. 2015, 10, 8762–8764. [Google Scholar]
- Guo, Z.; Zhang, T.; Song, J.; Jiang, H.; Chen, H. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photonics Res. 2021, 9, 574–582. [Google Scholar] [CrossRef]
- Gabrys, P.A.; Seo, S.E.; Wang, M.X.; Oh, E.; Macfarlane, R.J.; Mirkin, C.A. Lattice Mismatch in Crystalline Nanoparticle Thin Films. Nano Lett. 2018, 18, 579–585. [Google Scholar] [CrossRef]
- Guo, Z.; Long, Y.; Jiang, H.; Ren, J.; Chen, H. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics 2021, 3, 360011–3600110. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Chen, L.; Zheng, H.; Azeman, N.H.; Liu, M.X.; Liu, G.S.; Luo, Y.; Chen, Z. High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO2. Opt. Express 2020, 28, 25562–25573. [Google Scholar] [CrossRef]
Geometrical Parameter | Value (µm) |
---|---|
La | 365 |
Wa | 75 |
Lc | 75 |
Wc | 45 |
Λx | 80 |
Λy | 120 |
D | 1856 |
R | 103 |
H | 120 |
L | 780 |
W | 650 |
Geometrical Parameter | Value (µm) |
---|---|
La | 377 |
Wa | 124 |
Lc | 90 |
Wc | 55 |
Parameter Variation | Sensitivity (%) | Aeff (mm2) | Confinement Loss (dB/cm) | EML (cm−1) | |
---|---|---|---|---|---|
Lc | +2% | 98.02 | 0.0457 | 1.46 × 10−15 | 0.00189 |
+4% | 98.36 | 0.0455 | 6.96 × 10−15 | 0.00185 | |
Wc | +2% | 98.22 | 0.0454 | 6.52 × 10−15 | 0.00187 |
+4% | 98.76 | 0.0421 | 2.22 × 10−15 | 0.00182 | |
La | +2% | 98.19 | 0.0455 | 4.49 × 10−14 | 0.00185 |
+4% | 98.62 | 0.0451 | 4.28 × 10−14 | 0.00180 | |
Wa | +2% | 98.24 | 0.0461 | 3.58 × 10−14 | 0.00181 |
+4% | 98.76 | 0.0461 | 8.04 × 10−14 | 0.00170 | |
Optimum | 98 | 0.0460 | 2.03 × 10−14 | 0.00193 | |
Lc | −2% | 97.28 | 0.0464 | 3.35 × 10−14 | 0.00197 |
−4% | 96.90 | 0.0467 | 1.78 × 10−13 | 0.00201 | |
Wc | −2% | 97.07 | 0.0467 | 5.80 × 10−14 | 0.00198 |
−4% | 96.46 | 0.0474 | 1.03 × 10−14 | 0.00204 | |
La | −2% | 96.98 | 0.0467 | 9.88 × 10−15 | 0.00202 |
−4% | 96.15 | 0.0474 | 2.14 × 10−14 | 0.00213 | |
Wa | −2% | 97.02 | 0.0460 | 4.57 × 10−15 | 0.00205 |
−4% | 96.34 | 0.0460 | 3.82 × 10−15 | 0.00217 |
Reference | Analyte | Background | Wavelength/Frequency | Sensitivity (%) | Confinement Loss (dB/cm) | EML (cm−1) | |||
---|---|---|---|---|---|---|---|---|---|
x-pol | y-pol | x-pol | y-pol | x-pol | y-pol | ||||
[18] | Adulterated diesel/petrol | Zeonex | 1.5–3 THz | 98.89 98.67 | 98.90 98.68 | 1.58 × 10−14 9.50 × 10−15 | 1.58 × 10−14 9.50 × 10−15 | 0.00796 0.00779 | 0.00796 0.00779 |
[19] | Water Acetic acid Chloroform | Topas | 1–2 THz | 91.42 92.55 94.03 | 91.30 92.47 93.99 | 1.06 × 10−9 2.02 × 10−10 1.39 × 10−11 | NA | NA | NA |
[20] | RBC HB WBC Plasma Water | Zeonex | 1–3 THz | 96.17 95.54 95.87 95.37 94.97 | 96.18 95.57 95.89 95.39 95.01 | NA | 2.34 × 10−14 4.99 × 10−15 7.2 × 10−16 2.15 × 10−15 7.16 × 10−15 | 0.005 0.0048 0.0049 0.0047 0.0046 | 0.005 0.0048 0.0049 0.0047 0.0046 |
[22] | Water Ethanol Benzene | Topas | 1–3 THz | 94.6 95.2 95.4 | 94.9 95.4 95.6 | NA | NA | NA | NA |
[23] | Nicotine | Zeonex | 1–2 THz | 83 | 83 | 1.00 × 10−17 | 1.00 × 10−17 | 0.0082 | 0.0082 |
[24] | Milk | Zeonex | 1–3 THz | 93.79 | 94.69 | NA | NA | 0.0064 | 0.0079 |
[51] | Air pollutants | Topas | 0.6–1.2 THz | 91 | NA | 10−16 | NA | 0.019 | NA |
[63] | Sarin Soman Tabun | Zeonex | 1–2 THz | 90.8 91.3 92.5 | 91.2 91.7 92.7 | 1.82 × 10–12 2.08 × 10–12 2.73 × 10–12 | 2.47 × 10−12 2.22 × 10−12 3.78 × 10−12 | 0.00683 0.00737 0.00760 | 0.00687 0.00747 0.00770 |
[59] | Ethanol Benzene Water | Silica | 1–3 THz | 68.48 69.20 66.78 | 68.48 69.20 66.78 | 2.13 × 10−11 1.92 × 10−11 2.70 × 10−8 | 2.13 × 10−11 1.92 × 10−11 2.70 × 10−8 | NA | NA |
[53] | Illegal drugs | Topas | 0.2–2 THz | 81.41 | NA | 2.58×10−15 | NA | 0.09835 | NA |
[64] | Water | Topas | 0.5–1.5 THz | 96.25 | 96.25 | 2.11 × 10− 14 | 2.11 × 10−14 | 0.000916 | 0.000916 |
[69] | Water Ethanol Benzene | Zeonex | 0.8–3 THz | 84.25 86.32 88.36 | 84.25 86.32 88.36 | 5.55 × 10−10 5.60 × 10−10 6.60 × 10−10 | 5.55 × 10−10 5.60 × 10−10 6.60 × 10−10 | 0.00699 | 0.00699 |
[70] | Glucose Plasma WBC RBC | Topas | 1–4 THz | 84.55 85.09 85.62 87.68 | 84.55 85.09 85.62 87.68 | 7.92 × 10−11 6.66 × 10−11 3.14 × 10−11 1.86 × 10−11 | 7.92 × 10−11 6.66 × 10−11 3.14 × 10−11 1.86 × 10−11 | NA | NA |
[71] | Camel milk Cow milk | Zeonex | 0.2–2 THz | 81.16 81.32 | NA NA | 8.675 × 10−18 1.435 × 10−18 | NA NA | 0.033013 0.03284 | NA NA |
[72] | Water Ethanol Benzene | Zeonex | 1–2 THz | 92.3 93.5 93.7 | 92.9 93.8 94.2 | 2.05 × 10−13 8.48 × 10−13 8.57 × 10− 13 | 1.61 × 10− 13 3.85 × 10−13 1.28 × 10−13 | 0.0058 0.0062 0.0064 | 0.0054 0.0057 0.0059 |
[73] | Chloropicrin Ethyl-bromide methyl-bromide | Zeonex | 1–2 THz | 94.6 92.7 93.3 | 94.5 92.5 93 | 8.34 × 10–13 2.43 × 10–12 4.70 ×10–12 | 3.36 × 10–12 1.27 × 10–12 4.70 ×10–12 | 0.009414 0.008116 0.008464 | 0.009095 0.007929 0.008243 |
[74] | NaCl | Zeonex | 0.9–1.2 THz | 91.5 | 91.7 | NA | NA | 0.0037 | NA |
[75] | Ethanol, Benzene Water | Topas | 1–3 THz | 86.5 | 86.5 | 6.67 × 10−8 | 6.67 × 10−8 | NA | NA |
[76] | Cocaine | Zeonex | 0.4–1.6 THz | 87.02 | 87.02 | 10−4 | 10−4 | 0.01 | 0.01 |
[77] | Alcohol | Topas | 1–3 THz | 88.7 | 88.7 | 5.75 × 10−8 | 5.75 × 10−8 | NA | NA |
[78] | Refractive index (1.364) | Topas | 0.5–1.3 THz | 89.7 | 89.7 | 2.18 × 10−12 | 2.18 × 10−12 | NA | NA |
[79] | Ethanol Benzene Water | Topas | 0.6–1.6 THz | 84.6 | 84.6 | 7.49 × 10−11 | 7.49 × 10−11 | NA | NA |
[80] | Formalin | Zeonex | 1–2 THz | 77.71 | 77.71 | NA | NA | NA | NA |
[81] | Ethanol Benzene Water | Topas | 1.5–3.5 THz | 79.99 80.27 79.39 | 79.99 80.27 79.39 | 1.18 × 10–12 1.18 × 10–12 1.18 × 10–12 | 1.18 × 10–12 1.18 × 10–12 1.18 × 10–12 | NA | NA |
[82] | Ethanol Benzene Water | Zeonex | 1–3 THz | 78.56 79.76 77.51 | 78.56 79.76 77.51 | 5.80 × 10−10 6.02 × 10−10 5.74 × 10−10 | 5.80 × 10−10 6.02 × 10−10 5.74 × 10−10 | NA | NA |
[83] | Ethanol | Silica | 0.8–2 µm | 29.25 | 29.25 | 7.68 × 10–9 | 7.68 × 10–9 | NA | NA |
[84] | Benzene | Silica | 0.8–1.5 µm | 85.55 | 85.55 | 1.309 × 10–13 | 1.309 × 10–13 | NA | NA |
[85] | Gas | Silica | 1.1–1.7 µm | 75.14 | 75.14 | 1.41 × 10−4 | 1.41 × 10−4 | NA | NA |
[86] | Glucose Human mucosa | Silica | 1.3–2 µm | 47.59 47.31 | 6.54489 × 10−4 | NA | NA | ||
[87] | Ammonia gas | Silica | 1.544 µm | 70.25 | 1.202×10−3 | NA | NA | ||
Proposed Sensor | Bilirubin | HRS | 0.1–1.1 THz | 95 | 98 | 2.64 × 10−15 | 2.03 × 10−14 | 0.00131 | 0.00193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhelw, A.R.; Ibrahim, M.S.S.; Rashed, A.N.Z.; Mohamed, A.E.-N.A.; Hameed, M.F.O.; Obayya, S.S.A. Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region. Photonics 2023, 10, 68. https://doi.org/10.3390/photonics10010068
Elhelw AR, Ibrahim MSS, Rashed ANZ, Mohamed AE-NA, Hameed MFO, Obayya SSA. Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region. Photonics. 2023; 10(1):68. https://doi.org/10.3390/photonics10010068
Chicago/Turabian StyleElhelw, Ahmed Refaat, Mahmoud Salman S. Ibrahim, Ahmed Nabih Zaki Rashed, Abd El-Naser A. Mohamed, Mohamed Farhat O. Hameed, and Salah S. A. Obayya. 2023. "Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region" Photonics 10, no. 1: 68. https://doi.org/10.3390/photonics10010068
APA StyleElhelw, A. R., Ibrahim, M. S. S., Rashed, A. N. Z., Mohamed, A. E. -N. A., Hameed, M. F. O., & Obayya, S. S. A. (2023). Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region. Photonics, 10(1), 68. https://doi.org/10.3390/photonics10010068