Response of Lead Fluoride (PbF2) Crystal under X-ray and Gamma Ray Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculations
Energy Absorption Efficiency (EAE)
2.2. Experiments
2.2.1. Absolute Efficiency (AE) and Output Signal
2.2.2. X-ray Luminescence Efficiency (XLE)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Büchele, P.; Richter, M.; Tedde, S.F.; Matt, G.J.; Ankah, G.N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O.; et al. X-Ray Imaging with Scintillator-Sensitized Hybrid Organic Photodetectors. Nat. Photonics 2015, 9, 843–848. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.-Y.; Jeong, D.-N.; Seo, J.-Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.-G. Printable Organometallic Perovskite Enables Large-Area, Low-Dose X-Ray Imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Zuniga, J.P.; Abdou, M.; Thomas, M.P.; De Alwis Goonatilleke, M.; Guiton, B.S.; Mao, Y. Lanthanide-Doped Lanthanum Hafnate Nanoparticles as Multicolor Phosphors for Warm White Lighting and Scintillators. Chem. Eng. J. 2020, 379, 122314. [Google Scholar] [CrossRef]
- Hajagos, T.J.; Liu, C.; Cherepy, N.J.; Pei, Q. High-Z Sensitized Plastic Scintillators: A Review. Adv. Mater. 2018, 30, 1706956. [Google Scholar] [CrossRef]
- Ichikawa, J.; Kominami, H.; Hara, K.; Kakihana, M.; Matsushima, Y. Electronic Structure Calculation of Cr3+ and Fe3+ in Phosphor Host Materials Based on Relaxed Structures by Molecular Dynamics Simulation. Technologies 2022, 10, 56. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Zhang, P.; Su, Z.; Xu, J.; Xin, K.; Hang, Y.; Zhu, S.; Yin, H.; Li, Z.; et al. Efficiently Strengthen and Broaden 3 μm Fluorescence in PbF2 Crystal by Er3+/Ho3+ as Co-Luminescence Centers and Pr3+ Deactivation. J. Alloys Compd. 2019, 811, 152027. [Google Scholar] [CrossRef]
- Xia, X.; Hu, X.; Zou, J. Dual-Energy x-Ray Computed Tomography Study Based on CsI:Tl and LYSO:Ce Scintillator Combination. J. Appl. Phys. 2021, 130, 234902. [Google Scholar] [CrossRef]
- Kim, C.; Lee, W.; Melis, A.; Elmughrabi, A.; Lee, K.; Park, C.; Yeom, J.-Y. A Review of Inorganic Scintillation Crystals for Extreme Environments. Crystals 2021, 11, 669. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 2nd ed.; Particle Acceleration and Detection; Springer International Publishing: New York, NY, USA, 2017; ISBN 978-3-319-45521-1. [Google Scholar]
- Popov, A.I.; Chernov, S.A.; Trinkler, L.E. Time-Resolved Luminescence of CsI-Tl Crystals Excited by Pulsed Electron Beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 122, 602–605. [Google Scholar] [CrossRef]
- Michail, C.; Kalyvas, N.; Bakas, A.; Ninos, K.; Sianoudis, I.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.; Valais, I. Absolute Luminescence Efficiency of Europium-Doped Calcium Fluoride (CaF2:Eu) Single Crystals under X-Ray Excitation. Crystals 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- van Eijk, C.W.E. Inorganic Scintillators in Medical Imaging Detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 509, 17–25. [Google Scholar] [CrossRef]
- Kalavathi, P.; Senthamilselvi, M.; Prasath, V.B.S. Review of Computational Methods on Brain Symmetric and Asymmetric Analysis from Neuroimaging Techniques. Technologies 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Jang, Y.; Kim, M.; Kim, H. Types/Applications of Photoacoustic Contrast Agents: A Review. Photonics 2021, 8, 287. [Google Scholar] [CrossRef]
- Hatefi Hesari, S.; Haque, M.A.; McFarlane, N. A Comprehensive Survey of Readout Strategies for SiPMs Used in Nuclear Imaging Systems. Photonics 2021, 8, 266. [Google Scholar] [CrossRef]
- Bryant, P.A. Communicating Radiation Risk: The Role of Public Engagement in Reaching ALARA. J. Radiol. Prot. 2021, 41, S1–S8. [Google Scholar] [CrossRef]
- Shevelev, V.S.; Ishchenko, A.V.; Vanetsev, A.S.; Nagirnyi, V.; Omelkov, S.I. Ultrafast Hybrid Nanocomposite Scintillators: A Review. J. Lumin. 2022, 242, 118534. [Google Scholar] [CrossRef]
- Jones, T.; Townsend, D.W. History and Future Technical Innovation in Positron Emission Tomography. J. Med. Imaging 2017, 4, 011013. [Google Scholar] [CrossRef]
- Consuegra, D.; Korpar, S.; Križan, P.; Pestotnik, R.; Razdevšek, G.; Dolenec, R. Simulation Study to Improve the Performance of a Whole-Body PbF2 Cherenkov TOF-PET Scanner. Phys. Med. Biol. 2020, 65, 055013. [Google Scholar] [CrossRef]
- Rausch, I.; Ruiz, A.; Valverde-Pascual, I.; Cal-González, J.; Beyer, T.; Carrio, I. Performance Evaluation of the Vereos PET/CT System According to the NEMA NU2-2012 Standard. J. Nucl. Med. 2019, 60, 561–567. [Google Scholar] [CrossRef]
- Grant, A.M.; Deller, T.W.; Khalighi, M.M.; Maramraju, S.H.; Delso, G.; Levin, C.S. NEMA NU 2-2012 Performance Studies for the SiPM-Based ToF-PET Component of the GE SIGNA PET/MR System. Med. Phys. 2016, 43, 2334–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Sluis, J.; de Jong, J.; Schaar, J.; Noordzij, W.; van Snick, P.; Dierckx, R.; Borra, R.; Willemsen, A.; Boellaard, R. Performance Characteristics of the Digital Biograph Vision PET/CT System. J. Nucl. Med. 2019, 60, 1031–1036. [Google Scholar] [CrossRef]
- Lecoq, P. Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 473–485. [Google Scholar] [CrossRef]
- Lecoq, P.; Morel, C.; Prior, J.O.; Visvikis, D.; Gundacker, S.; Auffray, E.; Križan, P.; Turtos, R.M.; Thers, D.; Charbon, E.; et al. Roadmap toward the 10 Ps Time-of-Flight PET Challenge. Phys. Med. Ampmathsemicolon Biol. 2020, 65, 21RM01. [Google Scholar] [CrossRef] [PubMed]
- Dolenec, R.; Chagani, H.; Korpar, S.; Križan, P.; Pestotnik, R.; Stanovnik, A.; Verheyden, R. Time-of-Flight with Photonis Multi-Channel MCP-PMT Using MCP Signal. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 25–31 October 2009; pp. 1558–1560. [Google Scholar]
- Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A. Study of a Cherenkov TOF-PET Module. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2013, 732, 595–598. [Google Scholar] [CrossRef]
- Brunner, S.E.; Gruber, L.; Marton, J.; Suzuki, K.; Hirtl, A. Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET. IEEE Trans. Nucl. Sci. 2014, 61, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Kurosawa, S.; Yanagida, T.; Yokota, Y.; Yoshikawa, A. Crystal Growth and Scintillation Properties of Fluoride Scintillators. IEEE Trans. Nucl. Sci. 2012, 59, 2173–2176. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. Rare Earth Fluoride Nano-/Microcrystals: Synthesis, Surface Modification and Application. J. Mater. Chem. 2010, 20, 6831–6847. [Google Scholar] [CrossRef]
- Consuegra, D.; Korpar, S.; Pestotnik, R.; Krivzan, P.; Dolenec, R. MCP-PMT Timing at Low Light Intensities with a DRS 4 Evaluation Board. Nucleus 2019, 65, 42–46. [Google Scholar]
- Alokhina, M.; Canot, C.; Bezshyyko, O.; Kadenko, I.; Tauzin, G.; Yvon, D.; Sharyy, V. Simulation and Optimization of the Cherenkov TOF Whole-Body PET Scanner. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 378–381. [Google Scholar] [CrossRef]
- Kozma, P.; Bajgar, R.; Kozma, P. Radiation Resistivity of PbF2 Crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2002, 484, 149–152. [Google Scholar] [CrossRef]
- PbF2—Lead Fluoride Scintillator Crystal. Available online: https://www.advatech-uk.co.uk/pbf2.html (accessed on 8 October 2022).
- Egorov, V.K.; Klassen, N.V.; Negrii, V.D.; Prokopenko, V.M.; Shmurak, S.Z.; Sinitzin, V.V.; Solov’ev, A.V. Comparative Studies of Optical Spectra in PbF2 at Different Excitations. MRS Online Proc. Libr. 1994, 348, 265–269. [Google Scholar] [CrossRef]
- Jiang, H.; Orlando, R.; Blanco, M.A.; Pandey, R. First-Principles Study of the Electronic Structure of PbF2 in the Cubic, Orthorhombic, and Hexagonal Phases. J. Phys. Condens. Matter 2004, 16, 3081–3088. [Google Scholar] [CrossRef] [Green Version]
- Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A. Study of TOF PET Using Cherenkov Light. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011, 654, 532–538. [Google Scholar] [CrossRef]
- Michail, C.; Koukou, V.; Martini, N.; Saatsakis, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Panayiotakis, G.; Valais, I. Luminescence Efficiency of Cadmium Tungstate (CdWO4) Single Crystal for Medical Imaging Applications. Crystals 2020, 10, 429. [Google Scholar] [CrossRef]
- Boone, J.M. X-Ray Production, Interaction, and Detection in Diagnostic Imaging. Handb. Med. Imaging 2000, PM79, 1–78. [Google Scholar] [CrossRef]
- Storm, L.; Israel, H.I. Photon Cross Sections from 1 KeV to 100 MeV for Elements Z=1 to Z=100. At. Data Nucl. Data Tables 1970, 7, 565–681. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 KeV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1995. [Google Scholar]
- International Atomic Energy Agency. XMuDat: Photon Attenuation Data on PC Version 101 of August 1998 Summary Documentation; International Atomic Energy Agency (IAEA): Vienna, Austria, 1998. [Google Scholar]
- Loyd, M.; Pianassola, M.; Hurlbut, C.; Shipp, K.; Zaitseva, N.; Koschan, M.; Melcher, C.L.; Zhuravleva, M. Accelerated Aging Test of New Plastic Scintillators. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 949, 162918. [Google Scholar] [CrossRef]
- Linardatos, D.; Konstantinidis, A.; Valais, I.; Ninos, K.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Michail, C. On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal. Crystals 2020, 10, 961. [Google Scholar] [CrossRef]
- Saatsakis, G.; Kalyvas, N.; Michail, C.; Ninos, K.; Bakas, A.; Fountzoula, C.; Sianoudis, I.; Karpetas, G.E.; Fountos, G.; Kandarakis, I.; et al. Optical Characteristics of ZnCuInS/ZnS (Core/Shell) Nanocrystal Flexible Films Under X-Ray Excitation. Crystals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Valais, I.G.; Michail, C.M.; David, S.L.; Liaparinos, P.F.; Fountos, G.P.; Paschalis, T.V.; Kandarakis, I.S.; Panayiotakis, G.S. Comparative Investigation of Ce3+ Doped Scintillators in a Wide Range of Photon Energies Covering X-Ray CT, Nuclear Medicine and Megavoltage Radiation Therapy Portal Imaging Applications. IEEE Trans. Nucl. Sci. 2010, 57, 3–7. [Google Scholar] [CrossRef]
- Kurosawa, S.; Kochurikhin, V.V.; Yamaji, A.; Yokota, Y.; Kubo, H.; Tanimori, T.; Yoshikawa, A. Development of a Single Crystal with a High Index of Refraction. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2013, 732, 599–602. [Google Scholar] [CrossRef]
- Ren, G.; Shen, D.; Wang, S.; Yin, Z. Structural Defects and Characteristics of Lead Fluoride (PbF2) Crystals Grown by Non-Vacuum Bridgman Method. J. Cryst. Growth 2002, 243, 539–545. [Google Scholar] [CrossRef]
- Eriksson, L.; Cho, S.; Aykac, M.; Melcher, C.L.; Conti, M.; Eriksson, M.; Michel, C. Comparison of Count Rate Sensitivity Performance for a LSO-TOF System with a Cherenkov Radiation Based PbF2-TOF System. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 29 October–3 November 2012; pp. 3108–3111. [Google Scholar]
- Munafò, M.R.; Nosek, B.A.; Bishop, D.V.M.; Button, K.S.; Chambers, C.D.; Percie du Sert, N.; Simonsohn, U.; Wagenmakers, E.-J.; Ware, J.J.; Ioannidis, J.P.A. A Manifesto for Reproducible Science. Nat. Hum. Behav. 2017, 1, 0021. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.F.; Kierstead, J.A.; Lecoq, P.; Stoll, S.; Woody, C.L. A Search for Scintillation in Doped and Orthorhombic Lead Fluoride. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1994, 342, 473–476. [Google Scholar] [CrossRef]
- Achenbach, P.; Baunack, S.; Grimm, K.; Hammel, T.; von Harrach, D.; Ginja, A.L.; Maas, F.E.; Schilling, E.; Ströher, H. Measurements and Simulations of Cherenkov Light in Lead Fluoride Crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2001, 465, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Mastrikov, Y.A.; Chuklina, N.G.; Sokolov, M.N.; Popov, A.I.; Gryaznov, D.V.; Kotomin, E.A.; Maier, J. Small Radius Electron and Hole Polarons in PbX2 (X = F, Cl, Br) Crystals: A Computational Study. J. Mater. Chem. C 2021, 9, 16536–16544. [Google Scholar] [CrossRef]
- Derenzo, S.E.; Weber, M.J. Prospects for First-Principle Calculations of Scintillator Properties. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1999, 422, 111–118. [Google Scholar] [CrossRef]
- Alov, D.L.; Rybchenko, S.I. Luminescence Kinetics Of Orthorhombic PbF2. MRS Online Proc. Libr. 1994, 348, 271–275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoupis, V.; Linardatos, D.; Saatsakis, G.; Kalyvas, N.; Bakas, A.; Fountos, G.; Kandarakis, I.; Michail, C.; Valais, I. Response of Lead Fluoride (PbF2) Crystal under X-ray and Gamma Ray Radiation. Photonics 2023, 10, 57. https://doi.org/10.3390/photonics10010057
Ntoupis V, Linardatos D, Saatsakis G, Kalyvas N, Bakas A, Fountos G, Kandarakis I, Michail C, Valais I. Response of Lead Fluoride (PbF2) Crystal under X-ray and Gamma Ray Radiation. Photonics. 2023; 10(1):57. https://doi.org/10.3390/photonics10010057
Chicago/Turabian StyleNtoupis, Vasileios, Dionysios Linardatos, George Saatsakis, Nektarios Kalyvas, Athanasios Bakas, George Fountos, Ioannis Kandarakis, Christos Michail, and Ioannis Valais. 2023. "Response of Lead Fluoride (PbF2) Crystal under X-ray and Gamma Ray Radiation" Photonics 10, no. 1: 57. https://doi.org/10.3390/photonics10010057
APA StyleNtoupis, V., Linardatos, D., Saatsakis, G., Kalyvas, N., Bakas, A., Fountos, G., Kandarakis, I., Michail, C., & Valais, I. (2023). Response of Lead Fluoride (PbF2) Crystal under X-ray and Gamma Ray Radiation. Photonics, 10(1), 57. https://doi.org/10.3390/photonics10010057