A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment
Abstract
:1. Introduction
2. Design and Modeling
2.1. Model of Graphene Conductivity
2.2. Sensor’s Performance Deciding Parameters
3. Results and Discussion
3.1. Structure Optimization
3.2. Detection of Heavy Metals for Efficient and Rapid Water Treatment
3.3. Electric Field Intensity Responses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Souza, J.P.; Sposito, J.C.V.; do Amaral Crispim, B.; da Silva, F.G.; de Oliveira, K.M.P.; Kummrow, F.; do Nascimento, V.A.; Montagner, C.C.; Viana, L.F.; Solórzano, J.C.J.; et al. From Collection to Discharge: Physical, Chemical, and Biological Analyses for Fish Farm Water Quality Monitoring. Ecotoxicology 2019, 28, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, M.; Yan, X.; Guo, X.; Li, J.; Yang, Y.; Wei, D.; Liu, L.; Xie, J.; Liu, Y.; et al. The Antibody-Free Recognition of Cancer Cells Using Plasmonic Biosensor Platforms with the Anisotropic Resonant Metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396. [Google Scholar] [CrossRef] [PubMed]
- Taha, T.A.; Mehaney, A.; Elsayed, H.A. Detection of Heavy Metals Using One-Dimensional Gyroidal Photonic Crystals for Effective Water Treatment. Mater. Chem. Phys. 2022, 285, 126125. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Marco, M.P.; Lopez De Alda, M.J.; Barceló, D. Biosensors for Environmental Applications: Future Development Trends. Pure Appl. Chem. 2004, 76, 723–752. [Google Scholar] [CrossRef] [Green Version]
- Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in Biosensors for Detection of Pathogens in Food and Water. Enzyme Microb. Technol. 2003, 32, 3–13. [Google Scholar] [CrossRef]
- Wang, R.; Ren, Z.; Kong, D.; Hu, B.; He, Z. Highly Sensitive Label-Free Biosensor Based on Graphene-Oxide Functionalized Micro-Tapered Long Period Fiber Grating. Opt. Mater. 2020, 109, 110253. [Google Scholar] [CrossRef]
- Parmar, M.; Thakur, L.S. Heavy Metal Cu, Ni and Zn: Toxicity, Health Hazards and Their Removal Techniques by Low Cost Adsorbents. Int. J. Plant Sci. 2013, 3, 143–157. [Google Scholar]
- Izah, S.C.; Chakrabarty, N.; Srivastav, A.L. A Review on Heavy Metal Concentration in Potable Water Sources in Nigeria: Human Health Effects and Mitigating Measures. Expo. Health 2016, 8, 285–304. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Vahed, H.; Nadri, C. Sensitivity Enhancement of SPR Optical Biosensor Based on Graphene–MoS2 Structure with Nanocomposite Layer. Opt. Mater. 2019, 88, 161–166. [Google Scholar] [CrossRef]
- Jadeja, R.; Charola, S.; Patel, S.K.; Parmar, J.; Ladumor, M.; Nguyen, T.K.; Dhasarathan, V. Numerical Investigation of Graphene-Based Efficient and Broadband Metasurface for Terahertz Solar Absorber. J. Mater. Sci. 2020, 55, 3462–3469. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Katrodiya, D.; Nguyen, T.K.; Holdengreber, E.; Dhasarathan, V. Broadband Metamaterial-Based near-Infrared Absorber Using an Array of Uniformly Placed Gold Resonators. J. Opt. Soc. Am. B 2020, 37, 2163–2170. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Ahmed, K.; Bui, F.M.; Al-Zahrani, F.A. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev. Biomed. Eng. 2022, 16, 22–37. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J. Detection of Cancer with Graphene Metasurface-Based Highly Efficient Sensors. Diam. Relat. Mater. 2022, 129, 109367. [Google Scholar] [CrossRef]
- Shioya, K.; Komatsu, T.; Kim, H.G.; Sato, R.; Matusita, K. Optical Properties of Transparent Glass-Ceramics in K2ONb2O5TeO2 Glasses. J. Non. Cryst. Solids 1995, 189, 16–24. [Google Scholar] [CrossRef]
- Yoon, J.; Cho, H.Y.; Shin, M.; Choi, H.K.; Lee, T.; Choi, J.W. Flexible Electrochemical Biosensors for Healthcare Monitoring. J. Mater. Chem. B 2020, 8, 7303–7318. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, T.; Liu, C.; Chen, K.; Cheng, Y.; Chen, Z.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L.; et al. Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply. ACS Nano 2019, 13, 10272–10278. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Natesan, A.; Katkar, V. Graphene-Based Metasurface Refractive Index Biosensor For Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Trans. Nanobioscience 2022. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shaban, M. Highly Sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 Biosensors Utilizing Strong Surface Plasmon Resonance. Appl. Phys. B Lasers Opt. 2020, 126, 57. [Google Scholar] [CrossRef]
- Li, F.; He, K.; Tang, T.; Mao, Y.; Wang, R.; Li, C.; Shen, J. The Terahertz Metamaterials for Sensitive Biosensors in the Detection of Ethanol Solutions. Opt. Commun. 2020, 475, 126287. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Chen, H. A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci. Rep. 2017, 7, 16378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COMSOL Multiphysics® v. 6.0. Available online: www.comsol.com (accessed on 1 October 2022).
- Bent, S.; Böhm, K. Copper-Induced Liver Cirrhosis in a 13-Month Old Boy. Gesundheitswesen 1995, 57, 667–669. [Google Scholar]
- Urréjola, S.; Sánchez, A.; Hervello, M.F. Refractive Indices of Lithium, Magnesium, and Copper(II) Sulfates in Ethanol-Water Solutions. J. Chem. Eng. Data 2010, 55, 482–487. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Sayed, F.A.; Aly, A.H. Graphene Deposited Liquid Crystal and Thermal Sensitivity Using Photonic Crystals. Phys. Scr. 2021, 96, 035503. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Sorathiya, V.; Zakaria, R.; Dhasarathan, V.; Nguyen, T.K. Graphene-Based Plasmonic Absorber for Biosensing Applications Using Gold Split Ring Resonator Metasurfaces. J. Lightwave Technol. 2021, 39, 5617–5624. [Google Scholar] [CrossRef]
- Singh, R.; Cao, W.; Al-Naib, I.; Cong, L.; Withayachumnankul, W.; Zhang, W. Ultrasensitive Terahertz Sensing with High-Q Fano Resonances in Metasurfaces. Appl. Phys. Lett. 2014, 105, 171101. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Li, X.; Zhong, N.; Tan, X.; Zhang, X.; Liu, H.; Meng, H.; Liang, R. Analogue Electromagnetically Induced Transparency Based on Low-Loss Metamaterial and Its Application in Nanosensor and Slow-Light Device. Plasmonics 2017, 12, 641–647. [Google Scholar] [CrossRef]
- He, X.J.; Wang, L.; Wang, J.M.; Tian, X.H.; Jiang, J.X.; Geng, Z.X. Electromagnetically Induced Transparency in Planar Complementary Metamaterial for Refractive Index Sensing Applications. J. Phys. D Appl. Phys. 2013, 46, 365302. [Google Scholar] [CrossRef]
- Wan, M.; Yuan, S.; Dai, K.; Song, Y.; Zhou, F. Electromagnetically Induced Transparency in a Planar Complementary Metamaterial and Its Sensing Performance. Optik 2015, 126, 541–544. [Google Scholar] [CrossRef]
- Sahu, S.; Ali, J.; Yupapin, P.P.; Singh, G. Optical Biosensor Based on a Cladding Modulated Grating Waveguide. Optik 2018, 166, 103–109. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Cheng, T.; Yan, X.; Zhang, X.; Zhou, X.; Yuan, Z. Ultra-Stable D-Shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform. Plasmonics 2019, 14, 155–163. [Google Scholar] [CrossRef]
- Olyaee, S.; Najafgholinezhad, S.; Alipour Banaei, H. Four-Channel Label-Free Photonic Crystal Biosensor Using Nanocavity Resonators. Photonic Sens. 2013, 3, 231–236. [Google Scholar] [CrossRef]
Parameters | Various Concentrations of Ethyl Butanoate Present in Dry Exhaled Breath | |||||
---|---|---|---|---|---|---|
Concentration (C) (mol/kg) | 0 | 0.3 | 0.59 | 0.86 | 1.18 | 1.46 |
ΔC (mol/kg) | 0.3 | 0.29 | 0.27 | 0.32 | 0.28 | |
N | 1.33248 | 1.34125 | 1.34915 | 1.35606 | 1.36398 | 1.3706 |
Δn | 0.00877 | 0.0079 | 0.00691 | 0.00792 | 0.00662 | |
fr (THz) | 0.3591 | 0.3582 | 0.3573 | 0.3566 | 0.3558 | 0.3551 |
Δf (THz) | 0.0009 | 0.0009 | 0.0007 | 0.0008 | 0.0007 | |
S (GHz/RIU) | 102.62 | 107.98 | 106.02 | 104.76 | 104.93 | |
S (GHz kg/mol) | 3.00 | 3.05 | 2.91 | 2.80 | 2.74 | |
SR (GHz/RIU) | 102.62 | 113.92 | 101.30 | 101.01 | 105.74 | |
SR (GHz kg/mol) | 3.00 | 3.10 | 2.59 | 2.5 | 2.5 | |
FWHM (GHz) | 32 | 32.1 | 32.1 | 32 | 32.1 | 32.1 |
FOM (RIU−1) | 3.20 | 3.55 | 3.16 | 3.15 | 3.29 | |
Q Factor | 11.22 | 11.16 | 11.13 | 11.14 | 11.08 | 11.06 |
SNR | 0.028 | 0.028 | 0.022 | 0.025 | 0.022 | |
DR | 2.01 | 2.00 | 1.99 | 1.99 | 1.98 | 1.98 |
DA (THz−1) | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 |
DL (RIU) | 0.72 | 0.45 | 1.00 | 0.74 | 0.52 | |
SR (GHz) | 78.44 | 78.44 | 83.21 | 80.79 | 83.53 | |
UC (GHz) | 0.49 | 0.49 | 0.40 | 0.45 | 0.40 |
Parameters | Various Concentrations of Ethyl Butanoate Present in Dry Exhaled Breath | |||||
---|---|---|---|---|---|---|
Concentration (mol/kg) | 0 | 0.34 | 0.59 | 1 | 1.38 | 1.62 |
ΔC (mol/kg) | 0.34 | 0.25 | 0.41 | 0.38 | 0.24 | |
N | 1.33248 | 1.34072 | 1.34594 | 1.35438 | 1.36174 | 1.36613 |
Δn | 0.00824 | 0.00522 | 0.00844 | 0.00736 | 0.00439 | |
fr (THz) | 0.3591 | 0.3582 | 0.3577 | 0.35658 | 0.356 | 0.3555 |
Δf (THz) | 0.0009 | 0.0005 | 0.0009 | 0.0008 | 0.0005 | |
S (GHz/RIU) | 109.22 | 104.01 | 105.02 | 105.98 | 106.98 | |
S (GHz kg/mol) | 2.65 | 2.37 | 2.3 | 2.25 | 2.22 | |
SR (GHz/RIU) | 109.22 | 95.78 | 106.64 | 108.7 | 113.9 | |
SR (GHz kg/mol) | 2.65 | 2.00 | 2.20 | 2.10 | 2.08 | |
FWHM (GHz) | 32 | 32.1 | 32.1 | 32 | 32.1 | 32.1 |
FOM (RIU−1) | 3.40 | 2.98 | 3.33 | 3.39 | 3.55 | |
Q Factor | 11.22 | 11.16 | 11.14 | 11.15 | 11.09 | 11.07 |
SNR | 0.028 | 0.016 | 0.028 | 0.025 | 0.016 | |
DR | 2.01 | 2.00 | 2.00 | 1.99 | 1.99 | 1.98 |
DA (GHz−1) | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 |
DL (RIU) | 0.72 | 0.95 | 0.73 | 0.74 | 0.80 | |
SR (GHz) | 78.44 | 90.86 | 78.14 | 80.79 | 90.86 | |
UC (GHz) | 0.49 | 0.31 | 0.49 | 0.45 | 0.31 |
Sensor Design | Sensitivity | FOM (RIU−1) | Q Factor | Application |
---|---|---|---|---|
Proposed design | 113.92 GHz/RIU | 3.15 | 11.22 | Cu2+ Detection |
Proposed design | 113.9 GHz/RIU | 2.98 | 11.22 | Mg2+ Detection |
Ref [28] | 1421 nm/RIU | - | - | Hemoglobin Detection |
Ref [29] | 33 GHz/RIU | - | - | - |
Ref [30] | 294 nm/RIU | - | - | Biosensor, Slow-light devices |
Ref [31] | 929 nm/RIU | - | - | Sensing in chemical and biological diagnosis |
Ref [32] | 700 nm/RIU | - | - | Sensing |
Ref [33] | 322 nm/RIU | - | - | Biosensing |
Ref [34] | 1139 nm/RIU | - | - | Sensing |
Ref [35] | 65.7 nm/RIU | - | - | Biochemical Sensing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almawgani, A.H.M.; Surve, J.; Parmar, T.; Armghan, A.; Aliqab, K.; Ali, G.A.; Patel, S.K. A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment. Photonics 2023, 10, 56. https://doi.org/10.3390/photonics10010056
Almawgani AHM, Surve J, Parmar T, Armghan A, Aliqab K, Ali GA, Patel SK. A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment. Photonics. 2023; 10(1):56. https://doi.org/10.3390/photonics10010056
Chicago/Turabian StyleAlmawgani, Abdulkarem H. M., Jaymit Surve, Tanvirjah Parmar, Ammar Armghan, Khaled Aliqab, Ghassan Ahmed Ali, and Shobhit K. Patel. 2023. "A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment" Photonics 10, no. 1: 56. https://doi.org/10.3390/photonics10010056
APA StyleAlmawgani, A. H. M., Surve, J., Parmar, T., Armghan, A., Aliqab, K., Ali, G. A., & Patel, S. K. (2023). A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment. Photonics, 10(1), 56. https://doi.org/10.3390/photonics10010056