Investigation of Optical-Switching Mechanism Using Guided Mode Resonances
Abstract
:1. Introduction
2. Simulation Approach
3. Designing Parameters
4. Results
4.1. Effects of Variation in the Radius of the PhC-Cavity Using the Data Signal
4.2. Effects of Variation in the Number of PhC-Elements and Radius of PhC-Cavity for Data Signal
4.3. Quality Factor Analysis for Variation in the Number of PhC-Elements and Radius of PhC-Cavity for Data Signal
4.4. Investigation of Optical Switching Action in Different PhC-Elements-Based Structures Using Both Signals (Data and Control)
4.5. Analysis of Reflection Peaks against Variation in the Number of PhC Elements for Optical Switching Action
4.6. Analysis of Linewidth against Variation in the Number of PhC Elements for Optical Switching Action
4.7. Analysis of Quality Factor against Variation in the Number of PhC Elements and Radius of PhC-Cavity for Optical Switching Action
5. Discussion
6. Proposed Fabrication
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, T.-P.; Lee, Y.-L.; Li, Y.-W.; Mao, S.-W. The study of cooling mechanism design for high-power communication module with experimental verification. Appl. Sci. 2021, 11, 5188. [Google Scholar] [CrossRef]
- Miller, D.A.B. Are optical transistors the logical next step? Nat. Photonics 2010, 4, 3–5. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in silicon integrated photonics technologies for sensing applications in near-infrared and mid-infrared region: A review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Mohebzadeh-Bahabady, A.; Olyaee, S. All-Optical NOT and XOR Logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 2018, 12, 191–195. [Google Scholar] [CrossRef]
- Khan, Y.; Rehman, A.U.; Batool, B.A.; Noor, M.; Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Fabrication and investigation of spectral properties of a dielectric slab waveguide photonic crystal based fano-filter. Crystals 2022, 12, 226. [Google Scholar] [CrossRef]
- Shen, T.-Z.; Hong, S.-H.; Song, J.-K. Electro-optical switching of graphene oxide liquid crystals with an extremely large kerr coefficient. Nat. Mater. 2014, 13, 394–399. [Google Scholar] [CrossRef]
- Decleer, P.; Van Londersele, A.; Rogier, H.; Ginste, D.V. An alternating-direction hybrid implicit-explicit finite-difference time-domain method for the schrödinger equation. J. Comput. Appl. Math. 2022, 403, 113881. [Google Scholar] [CrossRef]
- Guerra, G.; Mousavi, S.M.A.; Taranta, A.; Fokoua, E.N.; Santagius, M. Unified coupled-mode theory for geometric and material perturbations in optical waveguides. J. Light Technol. 2022, 40, 4714–4727. [Google Scholar] [CrossRef]
- Dong, M.; Chen, L.; Jiang, L.; Li, P.; Bagci, H. Explicit time-domain finite-element boundary integral method for analysis of electromagnetic scattering. IEEE Trans. Antennas Propag. 2022, 70, 6089–6094. [Google Scholar] [CrossRef]
- Goswami, K.; Mondal, H.; Sen, M. Optimized design of multiple bends for maximum power transfer in optical waveguide. Optik 2022, 265, 169448. [Google Scholar] [CrossRef]
- Li, B.; Sun, H.; Zhang, H.; Li, Y.; Zang, J.; Cao, X.; Zhu, X.; Zhao, X.; Zhang, Z. Refractive index sensor based on the fano resonance in metal–insulator–metal waveguides coupled with a whistle-shaped Cavity. Micromachines 2022, 13, 1592. [Google Scholar] [CrossRef]
- Bass, S.F.; Palmer, A.M.; Schab, K.R.; Kerby-Patel, K.C.; Ruyle, J.E. Conversion matrix method of moments for time-varying electromagnetic analysis. IEEE Trans. Antennas Propag. 2022, 70, 6763–6774. [Google Scholar] [CrossRef]
- Xu, J.; Mai, W.; Werner, D.H. Generalized Temporal Transfer Matrix Method: A systematic approach to solving electromagnetic wave scattering in temporally stratified structures. Nanophotonics 2022, 11, 1309–1320. [Google Scholar] [CrossRef]
- Mastorakis, E.; Papakanellos, P.J.; Anastassiu, H.T.; Tsitsas, N.L. Analysis of electromagnetic scattering from large arrays of cylinders via a hybrid of the method of auxiliary sources (MAS) with the fast multipole method (FMM). Mathematics 2022, 10, 3211. [Google Scholar] [CrossRef]
- Han, J.; Wu, X.; Ge, X.; Xie, Y.; Song, G.; Liu, L.; Yi, Y. Highly sensitive liquid m-z waveguide sensor based on polymer suspended slot waveguide structure. Polymers 2022, 14, 3967. [Google Scholar] [CrossRef]
- Bhandari, B.; Lee, S.S. Reconfigurable fiber-to-waveguide coupling module enabled by phase-change material incorporated switchable directional couplers. Nat. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Asano, T.; Noda, S. Photonic crystal devices in silicon photonics. Proc. IEEE 2018, 106, 2183–2195. [Google Scholar] [CrossRef]
- Vigneron, J.P.; Simonis, P. Natural photonic crystals. Phys. B 2012, 407, 4032–4036. [Google Scholar] [CrossRef]
- Ahmed, U.; Khan, Y.; Ehsan, M.K.; Amirzada, M.R.; Ullah, N.; Khatri, A.R.; Ur Rehman, A.; Butt, M.A. Investigation of spectral properties of dbr-based photonic crystal structure for optical filter application. Crystals 2022, 12, 409. [Google Scholar] [CrossRef]
- Yang, H.; Kuan, Y.; Xiang, T.; Zhu, Y.; Cai, X.; Liu, L. Broadband polarization-insensitive optical switch on silicon-on-insulator platform. Opt. Express 2018, 26, 14340-5. [Google Scholar] [CrossRef]
- Ouahab, I.; Naoum, R. A novel all optical 4×2 encoder switch based on photonic crystal ring resonators. Optik 2016, 127, 7835–7841. [Google Scholar] [CrossRef]
- Yanik, M.F.; Fan, S. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 2003, 28, 2506–2508. [Google Scholar] [CrossRef] [PubMed]
- Khani, S.; Danaie, M.; Rezaei, P. Compact and low-oower all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 2020, 141, 106481. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Grange, T.; Malik, N.S.; Dupuy, E.; Tumanov, D.; de Assis, P.L.; Yeo, I.; Fratini, F.; Gregersen, N.; Auffèves, A.; et al. Ultra-Low Power Optical Transistor using a Single Quantum Dot Embedded in a Photonic Wire. In Proceedings of the Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Ma, L.L.; Li, C.; Sun, L.; Song, Z.; Lu, Y.; Li, B. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals. Photonics Res. 2022, 10, 786–792. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Di Benedetto, A.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.-T. Photonic Transistors based on Gain and Absorption Manipulation of Optical Interference. In Proceedings of the IEEE: Photonics in Switching, San Francisco, CA, USA, 19–22 August 2007. [Google Scholar]
- Afonina, S.; Maslennikov, E.D.; Zabotnov, S.V.; Golovan, L.A. All-Optical Switching in Photonic Crystals Based on Porous Silicon. In Proceedings of the SPIE: Photonic Crystal Materials and Devices IX, Brussels, Belgium, 14 May 2010. [Google Scholar]
- Wang, H.Z.; Zhou, W.M.; Zheng, J.P. A 2D rods-in-air square-lattice photonic crystal optical switch. Optik 2010, 121, 1988–1993. [Google Scholar] [CrossRef]
- Kang, X.-B.; Li, H.-D.; Wien, L.-W. A scheme for high-quality nonlinear all-optical switches. Opt. Int. J. Light Electron Opt. 2017, 134, 21–27. [Google Scholar] [CrossRef]
- Rao, W.; Song, Y.; Liu, M.; Jin, C. All-optical switch based on photonic crystal microcavity with multi-resonant modes. Optik 2010, 121, 1934–1936. [Google Scholar] [CrossRef]
- Cuesta-Soto, F.; Martínez, A.; Garcia, J.; Ramos, F.; Sanchis, P.; Blasco, J.; Martí, J. All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 2004, 12, 1–7. [Google Scholar] [CrossRef]
- Locatelli, A.; Modotto, D.; Paloschi, D.; De Angelis, C. All optical switching in ultrashort photonic crystal couplers. Opt. Commun. 2004, 237, 97–102. [Google Scholar] [CrossRef]
- Parra, J.; Navarro-Arenas, J.; Kovylina, M.; Sanchis, P. Impact of GST thickness on GST-loaded silicon waveguides for optimal optical switching. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Van Campenhout, J.; Green, W.M.; Assefa, S.; Vlasov, Y.A. Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 2009, 17, 24020–24029. [Google Scholar] [CrossRef]
- Goodarzi, A.; Ghanaatshoar, M. Coherent all-optical transistor based on frustrated total internal reflection. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Dhama, R.; Panahpour, A.; Pihlava, T.; Ghindani, D.; Caglayan, H. All-optical switching based on plasmon-induced enhancement of index of refraction. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Wang, T.; Tang, J.; Chen, M.; Xiong, J.; Wang, H.; Xu, J.; Yuan, L. Ultrafast metamaterial all-optical switching based on coherent modulation. Opt. Express 2022, 30, 9284–9297. [Google Scholar] [CrossRef]
- Takiguchi, M.; Takemura, N.; Tateno, K.; Nozaki, K.; Sasaki, S.; Sergent, S.; Notomi, M. All-Optical Switching Using a III-V Nanowire Integrated Si Photonic Crystal Nanocavity. In Proceedings of the IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019. [Google Scholar]
- Krishnamurthy, V.; Chen, Y.; Ho, S.-T. Photonic transistor design principles for switching gain ≥2. J. Light Technol. 2013, 31, 2086–2098. [Google Scholar] [CrossRef]
- Mishra, V.; Haldar, R.; Mondal, P.; Varshney, S.K. Efficient all-optical transistor action in shortlength multimode optical fibers. J. Light Technol. 2018, 36, 2582–2588. [Google Scholar] [CrossRef]
- Hui, Z.; Bu, X.; Wang, Y.; Han, D.; Gong, J.; Li, L.; Yan, S. Bi2O2Te nanosheets saturable absorber-based passive mode-locked fiber laser: From soliton molecules to harmonic soliton. Adv. Opt. Mater. 2022, 10, 2201812. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Z.; Huang, Q.; Dai, L.; Song, Q.; Yan, Z.; Zhang, L. Pump-controlled wavelength switchable dissipative soliton mode-locked yb-doped fiber laser using a 45° tilted fiber grating. Opt. Int. J. Light Electron Opt. 2020, 222, 1–6. [Google Scholar] [CrossRef]
- Hwang, J.; Pototschnig, M.; Lettow, R.; Zumofen, G.; Renn, A.; Götzinger, S.; Sandoghdar, V. A single-molecule optical transistor. Nat. Lett. 2009, 460, 76–80. [Google Scholar] [CrossRef]
- Winoto, A.; Qiu, J.; Wu, D.; Feng, M. Transistor laser–integrated photonics for optical logic. IEEE Nanotechnology. Mag. 2019, 13, 27–34. [Google Scholar] [CrossRef]
- Ng, W.H.; Podoliak, N.; Horak, P.; Wu, J.; Liu, H.; Stewart, W.J.; Kenyon, A.J. Design and fabrication of suspended indium phosphide waveguides for mems-actuated optical buffering. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–7. [Google Scholar] [CrossRef]
- Rehman, A.U.; Khan, Y.; Fomchenkov, S.; Butt, M.A. Investigation of Optical Amplification Action in Dielectric Photonic Crystals Cavity Based Structure. In Proceedings of the IEEE: VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 23–27 May 2022. [Google Scholar]
- Rehman, A.U.; Khan, Y.; Irfan, M.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A novel design of optical switch based on guided mode resonances in dielectric photonic crystal structures. Photonics 2022, 9, 580. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, B.; Liu, W.; Dai, D.; Shi, Y. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt. Express 2022, 30, 20839–20846. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, M.; Alagesan, T.; Yogesh, N. Cavity confinement in defect-based honeycomb photonic crystals and the design of waveguide–cavity fano-coupler for dielectric loss sensing. Opt. Commun. 2022, 508, 127757. [Google Scholar] [CrossRef]
- Jile, H. Application of nonlinear ring resonators for realizing all-optical digital multiplexers. Photonics Nanostructures Fundam. Appl. 2021, 45, 100920. [Google Scholar] [CrossRef]
- Kumar, S.; Sen, M. Integrable all-optical not gate using nonlinear photonic crystal mzi for photonic integrated circuit. J. Opt. Soc. Am. B 2022, 37, 359–369. [Google Scholar] [CrossRef]
- Kabilan, A.P.; Christina, X.S.; Caroline, P.E. Photonic Crystal Based All Optical OR and XO Logic Gates. In Proceedings of the IEEE: Second International Conference on Computing, Communication and Networking Technologies, Karur, India, 29–31 July 2010. [Google Scholar]
- Rani, P.; Kalra, Y.; Sinha, R.K. Realization of AND gate in y shaped photonic crystal waveguide. Opt. Commun. 2013, 298–299, 227–231. [Google Scholar] [CrossRef]
- Moradi, M.; Danaie, M.; Orouji, A.A. All-optical nor and not logic gates based on ring resonator-based plasmonic nanostructures. Optik 2022, 258, 168905. [Google Scholar] [CrossRef]
- Heydarian, K.; Nosratpour, A.; Razaghi, M. Design and analysis of an all-optical nand logic gate using a photonic crystal semiconductor optical amplifier based on the mach–zehnder optical amplifier. Photonics Nanostructures Fundam. Appl. 2022, 49, 100992. [Google Scholar] [CrossRef]
- Heydarian, K.; Nosratpour, A.; Razaghi, M. design and simulation of the all-optical xor logic gate by xpm mechanism using photonic crystal semiconductor optical amplifier based on mach–zehnder interferometer. J. Nonlinear Opt. Phys. Mater. 2022, 31, 2250013. [Google Scholar] [CrossRef]
- Jasim, M.A.; Aldalbahi, A. design of XOR photonic gate using highly nonlinear fiber. Electronics 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Georgel, R.; Grygoryev, K.; Sorensen, S.; Lu, H.; Andersson-Engels, S.; Burke, R.; O’Hare, D. Silicon Photomultiplier—A high dynamic range, high sensitivity sensor for bio-photonics applications. Biosensors 2022, 12, 793. [Google Scholar] [CrossRef]
- Peng, Z.; Feng, J.; Yuan, H.; Cheng, W.; Wang, Y.; Ren, X.; Cheng, H.; Zang, S.; Shuai, Y.; Liu, H.; et al. A non-volatile tunable ultra-compact silicon photonic logic gate. Nanomaterials 2022, 12, 1121. [Google Scholar] [CrossRef]
- Ha, Y.; Guo, Y.; Pu, M.; Xu, M.; Li, X.; Ma, X.; Zou, F.; Luo, X. Meta-optics-empowered switchable integrated mode converter based on the adjoint method. Nanomaterials 2022, 12, 3395. [Google Scholar] [CrossRef]
- Parandin, F.; Olyaee, S.; Kamarian, R.; Jomour, M. Design and simulation of linear all-optical comparator based on square-lattice photonic crystals. Photonics 2022, 9, 459. [Google Scholar] [CrossRef]
- MEEP Documentation MkDocs. Available online: https://meep.readthedocs.io/en/latest/ (accessed on 1 October 2022).
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. A flexible free-software package for electromagnetic simulations by the fdtd method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Yee, K.S. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Khan, Y.; Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. numerical study of fabrication-related effects of the structural-profile on the performance of a dielectric photonic crystal-based fluid sensor. Materials 2022, 15, 3277. [Google Scholar] [CrossRef]
- Khan, Y. Design and Numerical Simulation of Dielectric Photonic Crystal Devices and Investigation of an Optical Characterization Method. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2017. [Google Scholar]
- Tanabe, T.; Nishiguchi, K.; Shinya, A.; Kuramochi, E.; Inokawa, H.; Notomi, M.; Itabashi, S. All-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 2007, 90, 031115. [Google Scholar] [CrossRef]
- Nosratpour, A.; Razagh, M.; Darvish, G. Computational study of pulse propagation in photonic crystal semiconductor optical amplifier. J. Nanophotonics 2018, 12, 036015. [Google Scholar]
- Sahrai, M.; Abbasabadi, M. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal. Appl. Opt. 2017, 57, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Jalali Azizpour, M.R.; Soroosh, M.; Dalvand, N.; Seifi-Kavian, Y. All-optical ultra-fast graphene-photonic crystal switch. Crystals 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Rebhi, S.; Najjar, M. Hourglass nonlinear photonic crystal cavity for ultra-fast all-optical switching. Optik 2019, 180, 858–865. [Google Scholar] [CrossRef]
- Saldutti, M.; Xiong, M.; Dimopoulos, E.; Yu, Y.; Gioannini, M.; Mørk, J. Modal properties of photonic crystal cavities and applications to lasers. Nanomaterials 2021, 11, 3030. [Google Scholar] [CrossRef]
- Okada, H.; Baba, M.; Furukawa, M.; Yamane, K.; Sekiguchi, H.; Wakahara, A. Formation of SiO2 film by chemical vapor deposition enhanced by atomic species extracted from a surface-wave generated plasma. AIP Conf. Proc. 2017, 1807, 020006. [Google Scholar]
- Nomura, K.; Ogawa, H. SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation. J. Appl. Phys. 1992, 71, 1469. [Google Scholar] [CrossRef]
- Abood, M.K.; Wahid, M.H.A.; Salim, E.T.; Saimon, J.A. Niobium Pentoxide thin films employ simple colloidal suspension at low preparation temperature. In Proceedings of the EPJ Web of Conferences, Dubna, Russia, 3–7 July 2017. [Google Scholar]
- Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A. Optical fiber tip templating using direct focused ion beam milling. Nat. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; van Baren, J.; Berges, A.; Bekyarova, E.; Lui, C.H.; Bardeen, C.J. Organic Microcrystals Using Focused Ion Beam Milling. Cryst. Growth Des. 2020, 20, 1583–1589. [Google Scholar] [CrossRef]
- Juodkazis, S.; Rosa, L.; Bauerdick, S.; Peto, L.; El-Ganainy, R.; John, S. Sculpturing of photonic crystals by ion beam lithography: Towards complete photonic bandgap at visible wavelengths. Opt. Express 2011, 19, 5802–5810. [Google Scholar] [CrossRef]
- Manoccio, M.; Esposito, M.; Passaseo, A.; Cuscunà, M.; Tasco, V. Focused ion beam processing for 3D chiral photonics nanostructures. Micromachines 2021, 12, 6. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Lattice constant | a | 1 |
Radius of PhC-elements | r | 0.207a |
Radius of PhC-cavity | rc | 0.060a–0.350a |
Wavelength | - | Varying |
Resonant wavelength | - | 1.55 |
Refractive index of the substrate | 1.5 | |
Refractive index of the waveguide | 2.2 | |
Thickness of waveguide | 0.44a | |
Thickness of cladding | - | 0.68a |
Thickness of PML | PML | 3.0a |
Padding on either side | Padding | 4.0a |
Field decay monitoring point value | - |
Number of PhCs-Periods | Single Source (Data Signal) | ||||
---|---|---|---|---|---|
Reflectance % | Finesse | Linewidth (µm) | FSR (µm) | Quality Factor | |
09 PhC-elements | 60 | 6.08 | 0.073 | 0.444 | 7.6 |
11 PhC-elements | 70 | 8.763 | 0.07 | 0.613 | 10.43 |
13 PhC-elements | 71 | 9.129 | 0.066 | 0.603 | 11.66 |
15 PhC-elements | 79 | 13.298 | 0.061 | 0.811 | 12.57 |
Radius of PhC-cavity (9 PhCs) | Resonant wavelength (μm) | Reflectance (×100%) | Linewidth (μm) | Quality factor - | ||||
One source | Dual sources | One source | Dual sources | One source | Dual sources | One source | Dual sources | |
0.207 (μm) | 1.546 | 1.546 | 0.6950 | 0.7550 | 0.0914 | 0.0836 | 7.600 | 9.030 |
0.250 (μm) | 1.536 | 1.536 | 0.7679 | 0.8183 | 0.0714 | 0.0692 | 10.75 | 11.83 |
0.350 (μm) | 1.517 | 1.518 | 0.7398 | 0.7708 | 0.0645 | 0.0652 | 11.47 | 11.93 |
Radius of PhC-cavity (11 PhCs) | Resonant wavelength (μm) | Reflectance (×100%) | Linewidth (μm) | Quality factor - | ||||
One source | Dual sources | One source | Dual sources | One source | Dual sources | One source | Dual sources | |
0.207 (μm) | 1.545 | 1.545 | 0.8114 | 0.8590 | 0.0778 | 0.0738 | 10.43 | 11.64 |
0.250 (μm) | 1.534 | 1.534 | 0.8314 | 0.8695 | 0.0696 | 0.0688 | 11.95 | 12.64 |
0.350 (μm) | 1.516 | 1.516 | 0.7614 | 0.7851 | 0.0677 | 0.0687 | 11.25 | 11.43 |
Radius of PhC-cavity (13 PhCs) | Resonant wavelength (μm) | Reflectance (×100%) | Linewidth (μm) | Quality factor - | ||||
One source | Dual sources | One source | Dual sources | One source | Dual sources | One source | Dual sources | |
0.207 (μm) | 1.543 | 1.543 | 0.8678 | 0.9165 | 0.0744 | 0.0707 | 11.66 | 12.96 |
0.250 (μm) | 1.533 | 1.533 | 0.8639 | 0.8949 | 0.0699 | 0.0694 | 12.36 | 12.90 |
0.350 (μm) | 1.515 | 1.515 | 0.7614 | 0.7794 | 0.0712 | 0.0727 | 10.70 | 10.72 |
Radius of PhC-cavity (15 PhCs) | Resonant wavelength (μm) | Reflectance (×100%) | Linewidth (μm) | Quality factor - | ||||
One source | Dual sources | One source | Dual sources | One source | Dual sources | One source | Dual sources | |
0.207 (μm) | 1.542 | 1.542 | 0.9112 | 0.9518 | 0.0725 | 0.0696 | 12.57 | 13.68 |
0.250 (μm) | 1.533 | 1.533 | 0.8876 | 0.9131 | 0.0708 | 0.0704 | 12.54 | 12.97 |
0.350 (μm) | 1.514 | 1.515 | 0.7558 | 0.7708 | 0.0773 | 0.0797 | 9.800 | 9.700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.U.; Khan, Y.; Irfan, M.; Butt, M.A. Investigation of Optical-Switching Mechanism Using Guided Mode Resonances. Photonics 2023, 10, 13. https://doi.org/10.3390/photonics10010013
Rehman AU, Khan Y, Irfan M, Butt MA. Investigation of Optical-Switching Mechanism Using Guided Mode Resonances. Photonics. 2023; 10(1):13. https://doi.org/10.3390/photonics10010013
Chicago/Turabian StyleRehman, Atiq Ur, Yousuf Khan, Muhammad Irfan, and Muhammad A. Butt. 2023. "Investigation of Optical-Switching Mechanism Using Guided Mode Resonances" Photonics 10, no. 1: 13. https://doi.org/10.3390/photonics10010013
APA StyleRehman, A. U., Khan, Y., Irfan, M., & Butt, M. A. (2023). Investigation of Optical-Switching Mechanism Using Guided Mode Resonances. Photonics, 10(1), 13. https://doi.org/10.3390/photonics10010013