Flexible, Stretchable, Tunable, and Switchable DFB Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Holographic Mixture
2.2.2. Cell Preparation
2.2.3. Hologram Recording Set-Up
2.2.4. Flexible Grating Preparation
2.2.5. Pumping and Detection Set-Up
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.; Zhao, Y.; Zhao, Y. Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 2009, 5, 308–310. [Google Scholar] [CrossRef]
- Lucchetta, D.; Vita, F.; Francescangeli, D.; Francescangeli, O.; Simoni, F. Optical measurement of flow rate in a microfluidic channel. Microfluid. Nanofluid. 2016, 20, 9. [Google Scholar] [CrossRef]
- Kondo, M.; Takemoto, M.; Fukae, R.; Kawatsuki, N. Photomobile polymers from commercially available compounds: Photoinduced deformation of side-chain polymers containing hydrogen-bonded photoreactive compounds. Polym. J. 2012, 44, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Lucchetta, D.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R. Hybrid surface-relief/volume one dimensional holographic gratings. Opt. Mater. 2015, 42, 366–369. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, G.; Lan, T.; Zhao, J.; Liu, Y.; Chen, W. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators. Adv. Mater. 2015, 27, 7867–7873. [Google Scholar] [CrossRef]
- Castagna, R.; Lucchetta, D.E.; Rippa, M.; Xu, J.H.; Donato, A.D. Near-frequency photons Y-splitter. Appl. Mater. Today 2020, 19, 100636. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Z.; Wang, C.; Zarrouk, D.; Seo, J.W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983. [Google Scholar] [CrossRef] [Green Version]
- Lucchetta, D.; Simoni, F.; Hernandez, R.; Mazzulla, A.; Cipparrone, G. Lasing from chiral doped nematic liquid crystal droplets generated in a microfluidic device. Mol. Cryst. Liq. Cryst. 2017, 649, 11–19. [Google Scholar] [CrossRef]
- Angeloni, A.S.; Caretti, D.; Carlini, C.; Chiellini, E.; Galli, G.; Altomare, A.; Solaro, R.; Laus, M. Photochromic liquid-crystalline polymers. Main chain and side chain polymers containing azobenzene mesogens. Liq. Cryst. 1989, 4, 513–527. [Google Scholar] [CrossRef]
- Kawatsuki, N.; Hasegawa, T.; Ono, H.; Tamoto, T. Formation of Polarization Gratings and Surface Relief Gratings in Photocrosslinkable Polymer Liquid Crystals by Polarization Holography. Adv. Mater. 2003, 15, 991–994. [Google Scholar] [CrossRef]
- Shalit, A.; Lucchetta, D.; Piazza, V.; Simoni, F.; Bizzarri, R.; Castagna, R. Polarization-dependent laser-light structured directionality with polymer composite materials. Mater. Lett. 2012, 81, 232–234. [Google Scholar] [CrossRef]
- De Sio, L.; Serak, S.; Tabiryan, N.; Ferjani, S.; Veltri, A.; Umeton, C. Composite Holographic Gratings Containing Light-Responsive Liquid Crystals for Visible Bichromatic Switching. Adv. Mater. 2010, 22, 2316–2319. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, D.E.; Di Donato, A.; Singh, G.; Castagna, R. Lasing in Haloalkanes-based polymeric mixtures. Opt. Mater. 2022, 131, 112614. [Google Scholar] [CrossRef]
- Karl, M.; Glackin, J.M.E.; Schubert, M.; Kronenberg, N.M.; Turnbull, G.A.; Samuel, I.D.W.; Gather, M.C. Flexible and Ultra-Lightweight Polymer Membrane Lasers. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Castro-Smirnov, J.; Sousaraei, A.; Osorio, M.; Casado, S.; Hernandez, J.J.; Wu, L.; Zhang, Q.; Xia, R.; Granados, D.; Wannemacher, R.; et al. Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing. NPJ Flex. Electron. 2019, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Castagna, R.; Lucchetta, D.; Vita, F.; Criante, L.; Greci, L.; Simoni, F. Haloalkane-based polymeric mixtures for high density optical data storage. Opt. Mater. 2008, 30, 1878–1882. [Google Scholar] [CrossRef]
- Lucchetta, D.E.; Di Donato, A.; Francescangeli, O.; Singh, G.; Castagna, R. Light-Controlled Direction of Distributed Feedback Laser Emission by Photo-Mobile Polymer Films. Nanomaterials 2022, 12, 2890. [Google Scholar] [CrossRef]
- Castagna, R.; Vita, F.; Lucchetta, D.E.; Criante, L.; Greci, L.; Ferraris, P.; Simoni, F. Nitroxide radicals reduce shrinkage in acrylate-based holographic gratings. Opt. Mater. 2007, 30, 539–544. [Google Scholar] [CrossRef]
- Waldman, D.; Li, H.; Horner, M. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material. J. Imaging Sci. Technol. 1997, 41, 497–514. [Google Scholar]
- Castagna, R.; Davis, P.; Vasu, V.; Soucek, K.; Cross, C.; Greci, L.; Valacchi, G. Nitroxide radical TEMPO reduces ozone-induced chemokine IL-8 production in lung epithelial cells. Toxicol. Vitr. 2009, 23, 365–370. [Google Scholar] [CrossRef]
- Ramos, G.; Álvarez-Herrero, A.; Belenguer, T.; del Monte, F.; Levy, D. Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording. Appl. Opt. 2004, 43, 4018–4024. [Google Scholar] [CrossRef]
- Peters, G.I.; Allen, L. Amplified spontaneous emission I. The threshold condition. J. Phys. A Gen. Phys. 1971, 4, 238. [Google Scholar] [CrossRef]
- McGehee, M.D.; Gupta, R.; Veenstra, S.; Miller, E.K.; Díaz-García, M.A.; Heeger, A.J. Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 1998, 58, 7035–7039. [Google Scholar] [CrossRef]
- Malcuit, M.S.; Maki, J.J.; Simkin, D.J.; Boyd, R.W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 1987, 59, 1189–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganiel, U.; Hardy, A.; Neumann, G.; Treves, D. Amplified spontaneous emission and signal amplification in dye-laser systems. IEEE J. Quantum Electron. 1975, 11, 881–892. [Google Scholar] [CrossRef]
- Eichler, H.; Günter, P.; Pohl, D. Laser-Induced Dynamic Gratings; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kneubühl, F. Theories on Distributed Feedback Lasers; Handbook of Laser Science and Technology; Harwood Academic Publishers: Reading, UK, 1993. [Google Scholar]
- Criante, L.; Lucchetta, D.; Vita, F.; Castagna, R.; Simoni, F. Distributed feedback all-organic microlaser based on holographic polymer dispersed liquid crystals. Appl. Phys. Lett. 2009, 94, 111114. [Google Scholar] [CrossRef]
- Fu, Y.; Zhai, T. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 2020, 13, 18–34. [Google Scholar] [CrossRef]
- Zhai, T.; Ma, X.; Han, L.; Zhang, S.; Ge, K.; Xu, Y.; Xu, Z.; Cui, L. Self-Aligned Emission of Distributed Feedback Lasers on Optical Fiber Sidewall. Nanomaterials 2021, 11, 2381. [Google Scholar] [CrossRef]
- Kok, M.H.; Lu, W.; Lee, J.C.W.; Tam, W.Y.; Wong, G.K.; Chan, C.T. Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions. Appl. Phys. Lett. 2008, 92, 151108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchetta, D.E.; Di Donato, A.; Francescangeli, O.; Riminesi, C.; Singh, G.; Castagna, R. Flexible, Stretchable, Tunable, and Switchable DFB Laser. Photonics 2023, 10, 12. https://doi.org/10.3390/photonics10010012
Lucchetta DE, Di Donato A, Francescangeli O, Riminesi C, Singh G, Castagna R. Flexible, Stretchable, Tunable, and Switchable DFB Laser. Photonics. 2023; 10(1):12. https://doi.org/10.3390/photonics10010012
Chicago/Turabian StyleLucchetta, Daniele Eugenio, Andrea Di Donato, Oriano Francescangeli, Cristiano Riminesi, Gautam Singh, and Riccardo Castagna. 2023. "Flexible, Stretchable, Tunable, and Switchable DFB Laser" Photonics 10, no. 1: 12. https://doi.org/10.3390/photonics10010012
APA StyleLucchetta, D. E., Di Donato, A., Francescangeli, O., Riminesi, C., Singh, G., & Castagna, R. (2023). Flexible, Stretchable, Tunable, and Switchable DFB Laser. Photonics, 10(1), 12. https://doi.org/10.3390/photonics10010012