Macrophytes taxa composition determines microinvertebrates utilized as environmental indicators in freshwater ecosystems. This study was conducted in Shengjin Lake. In this lake, local communities have been practicing using sine fishing nets for fishing and this has a disrupting effect on macrophyte vegetation, even
[...] Read more.
Macrophytes taxa composition determines microinvertebrates utilized as environmental indicators in freshwater ecosystems. This study was conducted in Shengjin Lake. In this lake, local communities have been practicing using sine fishing nets for fishing and this has a disrupting effect on macrophyte vegetation, even though it was the major for the disappearance of submerged vegetation before it was banned. As a result of this sine fishing net ban by the local authorities, the vegetation that had disappeared began to recover. Thus, this study investigated the role of architecturally differentiated macrophytes restoration effect on zooplankton communities’ diversity, abundance, and species composition; open water was used as a control. For this, the data were collected from different habitats via site 1 (open water) site 2, (free-floating), site 3 (emergent and submerged), site 4 (submerged), and site 5 (emergent) macrophytes. In the present study, the results demonstrated that the relative mean density of Rotifer was measured high which ranged from (219 ± 141–678 ± 401 ind L
−1), mainly dominated by
Keratella cochlearis and
Lecane cornuta species. Following Rotifera, Cladocera population density was reported high and ranged within (36 ± 6.2–262.5 ± 49.4 ind L
−1). The Cladocera group was dominated by
Daphnia spp.,
Moina micura,
Ceriodaphnia reticulata, and
Chydorus latus species. Compared to Rotifer and Cladocera, Copepod community were recoded least with relative mean density ranged within (11.52 ± 2.22–85.5 ± 27 ind L
−1) and dominated by
Microcyclops javanus,
Thermodiaptomus galebi, and
Sinocalanus doerrii species. From environmental variables and the zooplankton density relationship analyzed, the redundancy analysis (RDA) results indicated that Water Temperature, Chlorophyll a, Dissolved Oxygen, Total Phosphorus, and Ammonium Nitrogen were found the most influential variables on zooplankton communities. Stepwise regression correlation showed that Copepod and Cladocera were found more dependent on environmental factors. For instance, Nitrate Nitrogen was negatively correlated with Cladocera, Copepod, and total zooplankton biomass but positively with Cladocera diversity. Water Temperature showed a positive relationship with Rotifer diversity; however, both Chlorophyll a and Electrical Conductivity were correlated positively with Cladocera biomass. Species diversity by the Shannon–Wiener index (H) illustrated a dynamic trend among the monitored sites which ranged between (0.65–4.25). From the three groups of zooplankton communities in contrast to Cladocera and Copepod, Rotifer species obtained more diversity across the studied sites. The Cladocera diversity (H′) index indicated a similar tendency in all sites. However, more Copepod diversity (H′) was observed in site 4. In conclusion, this study results can provide valuable insights into the health and dynamics of the aquatic ecosystem to understand factors deriving ecological imbalance and develop an integrated approach for effective strategies for management and conservation.
Full article