Longitudinal Distribution of Benthic Macroinvertebrates Related to River Ecological Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Benthic Invertebrate Sampling and Sample Processing
2.3. Data Analysis
- T (Number of Taxa)—refers to the overall diversity of benthic invertebrates;
- Number of EPT taxa (E—Ephemeroptera, P—Plecoptera, T—Trichoptera)—characterizes the number of sensitive taxonomic groups;
- DSFI (Danish Stream Fauna Index)—refers to the level of organic pollution [49];
- ASPT (Average Score per Taxon)—refers to the total taxon sensitivity [50];
- H’ (Shannon–Wiener species diversity index)—characterizes the biodiversity and dominant taxonomic groups;
- Hmax (maximum possible species diversity index)—describes what the maximum species diversity would be if, at a given sampling site, all species had the same number of individuals at a given number of species;
- E (evenness)—characterizes the proportion of each species in relation to the total number of species at the sampling site [51].
3. Results
3.1. Sediment Characterization
3.2. Faunal Composition and Community Structure
3.3. Ecological Quality Assessment in the Venta River
4. Discussion
4.1. Benthic Invertebrate Species Composition and Distribution
4.2. Functional Groups of Benthic Macroinvertebrates
4.3. Water Quality Assessment Based on Biotic Indices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, J.F.; Märker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B.M.; Andersen, H.E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M.; et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 2020, 4, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Muruganandam, M.; Rajamanickam, S.; Sivarethinamohan, S.; Gaddam, M.K.R.; Velusamy, P.; Gomathi, R.; Ravindiran, G.; Gurugubelli, T.R.; Muniasamy, S.K. Impact of climate change and anthropogenic activities on the aquatic ecosystem—A review. Environ. Res. 2023, 238, 117233. [Google Scholar]
- European Council Directive. European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. OJEC 2000, 327, 1–72. [Google Scholar]
- Lenat, D.R. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc. 1988, 7, 222–233. [Google Scholar] [CrossRef]
- Gordon, N.D.; McMahon, T.A.; Finlayson, B.L.; Gippel, C.J.; Nathan, R.J. Stream Hydrology. An Introduction for Ecologists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Li, L.; Zheng, B.; Liu, L. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends. Procedia Environ. Sci. 2010, 2, 1510–1524. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; Resh, V.H. Freshwater Biomonitoring and Benthic Macroinvertebrates; Chapman and Hall: New York, NY, USA; London, UK, 1993. [Google Scholar]
- Ruzickova, J.; Benesova, L. Benthic macroinvertebrates as indicators of biological integrity in lotic feshwater ecosystems of large—Scale protected areas in the Czech Republic: Preliminary results. Silva Gabreta 1996, 1, 165–168. [Google Scholar]
- Hellawell, J.M. Biological Indicators of Freshwater Pollution and Environmental Management; Elsevier: London, UK, 1986. [Google Scholar]
- Haase, R.; Nolte, U. The invertebrate species index (ISI) for streams in southeast Queensland, Australia. Ecol. Indic. 2008, 8, 599–613. [Google Scholar] [CrossRef]
- Vitecek, S.; Johnson, R.K.; Poikane, S. Assessing the ecological status of European rivers and lakes using benthic invertebrate communities: A practical catalogue of metrics and methods. Water 2021, 13, 346. [Google Scholar] [CrossRef]
- Vaughan, I.P.; Ormerod, S.J. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 2012, 18, 2184–2194. [Google Scholar] [CrossRef]
- Durance, I.; Ormerod, S.J. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 2009, 54, 388–405. [Google Scholar] [CrossRef]
- Brysiewicz, A.; Czerniejewski, P.; Sieczko, L. An assessment of maintenance works and their impact on macroinvertebrate communities and long-term recolonization to small lowland watercourses. J. Environ. Manag. 2024, 367, 121849. [Google Scholar] [CrossRef]
- Karádi-Kovács, K.; Szivák, I.; Bozóki, T.; Kovács, K.; Móra, A.; Padisák, J.; Selmeczy, G.B.; Schmera, D.; Boda, P. Long-term recovery dynamics determined by the degree of the disturbance—Ten years tracking of aquatic macroinvertebrate recolonisation after an industrial disaster (Red Sludge Disaster, Hungary). Sci. Total Environ. 2024, 921, 171071. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Peters, K.; Kiesel, J.; Welti, E.A.R.; Gillmann, S.M.; Lorenz, A.W.; Jähnig, S.C.; Haase, P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. Sci. Total Environ. 2024, 929, 172659. [Google Scholar] [CrossRef] [PubMed]
- Haubrock, P.J. Site characteristics determine the prevalence of extreme weather events affecting freshwater macroinvertebrate communities. Sci. Total Environ. 2024, 950, 175436. [Google Scholar] [CrossRef]
- de Donnová, S.; Devánová, A.; Barešová, L.; Zahrádková, S.; Bojková, J. Hydromorphological degradation modifies long-term macroinvertebrate responses to water quality and climate changes in lowland rivers. Environ. Res. 2024, 261, 119638. [Google Scholar] [CrossRef]
- Joachim, S.; Beaudouin, R.; Daniele, G.; Geffard, A.; Bado-Nilles, A.; Tebby, C.; Palluel, O.; Dedourge-Geffard, O.; Fieu, M.; Bonnard, M.; et al. Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. Ecotoxicol. Environ. Saf. 2021, 211, 111812. [Google Scholar] [CrossRef]
- Poikane, S.; Johnson, R.K.; Sandin, L.; Schartau, A.K.; Solimini, A.G.; Urbanič, G.; Arbačiauskas, K.; Aroviita, J.; Gabriels, W.; Miler, O.; et al. Benthic macroinvertebrates in lake ecological assessment: A review of methods, intercalibration and practical recommendations. Sci. Total Environ. 2016, 543 Pt A, 123–134. [Google Scholar] [CrossRef]
- Simaika, J.P.; Stribling, J.; Lento, J.; Bruder, A.; Poikane, S.; Moretti, M.S.; Rivers-Moore, N.; Meissner, K.; Macadam, C.R. Towards harmonized standards for freshwater biodiversity monitoring and biological assessment using benthic macroinvertebrates. Sci. Total Environ. 2024, 918, 170360. [Google Scholar] [CrossRef]
- Ozoliņš, D.; Skuja, A. Fitting the New Latvian Macroinvertebrate Index (LMI) for Rivers to the Results of the Central-Baltic Geographical Intercalibration Group; Institute of Biology, University of Latvia: Salaspils, Latvia, 2016; 20p. [Google Scholar]
- Birk, S.; Böhmer, J.; Schöll, F.; Poikane, S. Intercalibrating the National Classifications of Ecological Status for Very Large Rivers in Europe Biological Quality Element: Benthic Invertebrates; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Šidagytė-Copilas, E.; Arbačiauskas, K. A multimetric macroinvertebrate index for the assessment of the ecological status of Lithuanian rivers. Limnologica 2022, 97, 126010. [Google Scholar] [CrossRef]
- Kuntke, F.; de Jonge, N.; Hesselsøe, M.; Lund Nielsen, J. Stream water quality assessment by metabarcoding of invertebrates. Ecol. Indic. 2020, 111, 105982. [Google Scholar] [CrossRef]
- Parele, E. Ventas upes makrozoobentosa biocenotiskā struktūra un tās faunistiskais sastāvs no 1963. līdz 1999. gadam (Biocenotical structure and faunistic composition of macrozoobenthos in River Venta from 1963 to 1999). In Klimata Mainība un Ūdeņi. Rakstu Krājums; Plikša, I., Ed.; University of Latvia: Riga, Latvia, 2008; pp. 92–103. (In Latvian) [Google Scholar]
- Polazzo, F.; Domisch, S.; Flörke, M.; Rico, A. A modelling approach to assess climate change impacts on taxonomic and functional diversity of European stream macroinvertebrates: Implications for water quality monitoring. Ecol. Indic. 2024, 166, 112404. [Google Scholar] [CrossRef]
- Wegscheider, B.; Monk, W.A.; Lento, J.; Haralampides, K.; Ndong, M.; Linnansaari, T.; Curry, R.A. Developing environmental flow targets for benthic macroinvertebrates in large rivers using hydraulic habitat associations and taxa thresholds. Ecol. Indic. 2023, 146, 109821. [Google Scholar] [CrossRef]
- Vilenica, M.; Brigić, A.; Sartori, M.; Mihaljević, Z. Microhabitat selection and distribution of functional feeding groups of mayfly larvae (Ephemeroptera) in lotic karst habitats. Knowl. Manag. Aquat. Ecosyst. 2018, 419, 17. [Google Scholar] [CrossRef]
- Jowett, I.G.; Richardson, J.; Biggs, B.J.F.; Hickey, C.W.; Quinn, J.M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 1991, 25, 187–199. [Google Scholar] [CrossRef]
- Klavins, M.; Rodinov, V. Long-term changes of river discharge regime in Latvia. Hydrol. Res. 2008, 39, 133–141. [Google Scholar] [CrossRef]
- Jēkabsone, J.; Uzule, L. Assessment of the hydromorphological quality of streams in the Venta River Basin District, Latvia. Est. J. Ecol. 2014, 63, 205–216. [Google Scholar] [CrossRef]
- Upes.lv. Available online: http://www.upes.lv/informacija/ventas-baseins/ (accessed on 19 November 2024).
- Nikodemus, O.; Kļaviņš, M. (Eds.) Latvija. Zeme, Daba, Tauta, Valsts; Latvijas Universitātes Akadēmiskais Apgāds: Rīga, Latvia, 2018. [Google Scholar]
- Republic of Latvia Cabinet. Regulation No. 858 “Regulations Regarding the Characterisation of the Types, Classification, Quality Criteria of Surface Water Bodies and the Procedures for Determination of Anthropogenic Loads”. 2004. Available online: https://likumi.lv/ta/en/en/id/95432 (accessed on 23 November 2023).
- Timm, T. A Guide to the Estonian Annelida; Naturalist’s Handbooks 1; Estonian Academy Publishers: Tallinn, Estonia, 1999. [Google Scholar]
- Nilsson, A. (Ed.) Aquatic Insects of North Europe. A Taxonomic Handbook; Apollo Books: Stenstrup, Denmark, 1996; Volume 1. [Google Scholar]
- Sloka, N. Latvijas PSR Dzīvnieku Noteicējs: Dēles (Hirudinea); P. Stučkas LVU: Rīga, Latvia, 1983. [Google Scholar]
- Sloka, N. Ūdensdzīvnieku Noteikšana Dabā; Zvaigzne ABC: Rīga, Latvia, 1996. [Google Scholar]
- Edington, J.M.; Hildrew, A.G. A Revised Key to the Caseless Caddis Larvae of the British Isles, with Notes on Their Ecology; Freshwater Biological Association: Lakeside, UK, 2005. [Google Scholar]
- Rudzīte, M.; Dreijers, E.; Ozoliņa-Moll, L.; Parele, E.; Pilāte, D.; Rudzītis, M.; Stalažs, A. A Guide to the Molluscs of Latvia; LU Akadēmiskais Apgāds: Rīga, Latvia, 2010. [Google Scholar]
- Gledhill, T.; Sutcliffe, D.W.; Williams, W.D. British Freshwater Crustacea Malacostraca: Key with Ecological Notes; Freshwater Biological Association Scientific Publication No. 52; Freshwater Biological Association: Ambleside, UK, 1993. [Google Scholar]
- Elliott, M.J.; Humpesh, H.U.; Macan, T.T. Larvae of the British Ephemeroptera: A Key with Ecological Notes; FBA Scientific Publications No. 49; Freshwater Biological Association: Cumbria, UK, 1988. [Google Scholar]
- Wallace, D.J.; Wallace, B.; Philipson, N.G. A Key to the Case—Bearing Caddis Larvae of Britain and Ireland; Scientific Publication No. 51; Freshwater Biological Association: Amblesidae, UK, 1990. [Google Scholar]
- Lindegaard, C. Diptera Chironomidae, Non-biting Midges. In Aquatic Insects of North Europe. A Taxonomic Handbook; Nilsson, A., Ed.; Apollo Books Stenstrup: Stenstrup, Denmark, 1997; Volume 2. [Google Scholar]
- Gloer, P.; Meier-Brook, C. Süsswassermollusken: Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland; Deutscher Jugendbund für Naturbeobachtung: Hamburg, Germany, 1998. [Google Scholar]
- Skriver, J.; Friberg, N.; Kirkegaard, J. Biological assessment of running waters in Denmark: Introduction of the Danish Stream Fauna Index (DSFI). SIL Proc. 1922–2010 2000, 27, 1822–1830. [Google Scholar] [CrossRef]
- Armitage, P.D.; Moss, D.; Wright, J.F.; Furse, M.T. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res. 1983, 17, 333–347. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- AQEM Consortium. ASTERICS—Einschließlich Perlodes—Deutsches Bewertungssystem auf Grundlage des Makrozoobenthos. Softwarehandbuch. 2013. Available online: http://www.fliessgewaesserbewertung.de/downloads/ASTERICS_Softwarehandbuch_Version4.pdf (accessed on 5 April 2015).
- Timm, H. Towards Joint Management of the Transboundary Gauja/Koiva River Basin District: Macroinvertebrates of Estonian Streams and Lakes in 2012; Report; Estonian University of Life Sciences: Tartu, Estonia, 2012. [Google Scholar]
- Pantle, E.; Buck, H. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas Wasserfach 1995, 96, 604. [Google Scholar]
- Cimdiņš, P.; Druvietis, I.; Liepa, R.; Parele, E.; Urtāne, L.; Urtāns, A. A Latvian catalogue of indicator species of freshwater saprobity. Proc. Latv. Acad. Sci. 1995, 1, 122–133. [Google Scholar]
- Freshwaterecology.info Database. Available online: https://www.freshwaterecology.info (accessed on 5 July 2024).
- Schmidt-Kloiber, A.; Hering, D. www.freshwaterecology.info—An online tool that unifies, standardises, and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015, 53, 271–282. [Google Scholar] [CrossRef]
- Environment Agency. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual; Environment Agency: Bristol, UK, 2003; 136p. [Google Scholar]
- Republic of Latvia Cabinet. Regulation No. 396 “Regulations on the List of Specially Protected Species and the List of Specially Protected Species with Limited Use”. 2000. Available online: https://likumi.lv/ta/id/12821-noteikumi-par-ipasi-aizsargajamo-sugu-un-ierobezoti-izmantojamo-ipasi-aizsargajamo-sugu-sarakstu#piel1 (accessed on 10 December 2024).
- AquaNIS. Editorial Board. Information System on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web Electronic Publication. 2015. Version 2.36+. Available online: www.corpi.ku.lt/databases/aquanis (accessed on 5 August 2019).
- Lackschewitz, P. Nachtrag zu den Neuropteren und Trichopteren des Ostbaltischen Gebietes. Arch. Naturk. Est. 1929, 14, 1–64. [Google Scholar]
- Vivien, R.; Werner, I.; Ferrari, B.J.D. Simultaneous preservation of the DNA quality, the community composition and the density of aquatic oligochaetes for the development of genetically based biological indices. PeerJ 2018, 6, e6050. [Google Scholar] [CrossRef]
- CABI. Chelicorophium curvispinum (Caspian mud Shrimp). Datasheet. Invasive Species Compendium. 2017. Available online: http://www.cabi.org/isc/datasheet/108307#20077200969 (accessed on 27 June 2017).
- LVĢMC. Bioloģiskie Dati. Zoobentosa Dati 2006–2013. Available online: http://meteo.lv/lapas/virszemes-udens-datu-meklesana/biologiskie-dati/biologiskie-dati?id=1988&nid=950 (accessed on 5 April 2015). (In Latvian).
- Leszczyńska, J.; Głowacki, Ł.; Grzybkowska, M. Factors shaping species richness and biodiversity of riverine macroinvertebrate assemblages at the local and regional scale. Community Ecol. 2017, 18, 227–236. [Google Scholar] [CrossRef]
- Schröder, M.; Kiesel, J.; Schattmann, A.; Jähnig, S.C.; Lorenz, A.W.; Kramm, S.; Keizer-Vlek, K.; Rolauffs, P.; Graf, W.; Leitner, P.; et al. Substratum associations of benthic invertebrates in lowland and mountain streams. Ecol. Indic. 2013, 30, 178–189. [Google Scholar] [CrossRef]
- Skuja, A. Caddisfly (Trichoptera) Community Ecology in the Medium-Sized Rhythral Type Streams in Latvia. Ph.D. Thesis, University of Latvia, Riga, Latvia, 2011. (In Latvian). [Google Scholar]
- Uwadiae, R.E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: Implications for ecosystem functions. N. Y. Sci. J. 2010, 3, 6–15. [Google Scholar]
- Uzule, L. Macrophyte vegetation assessment in streams of the Venta river basin district. Acta Biol. Univ. Daugavp. 2015, 15, 191–200. [Google Scholar]
- Schmidt-Kloiber, A.; Graf, W.; Lorenz, A.; Moog, O. The AQEM/STAR taxalist—a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 2006, 566, 325–342. [Google Scholar]
- Sun, C.; Xia, L.; Zhang, M.; He, Q.; Yu, N.; Xiang, H.; Yang, H. The impacts of different seasons on macroinvertebrate community structure and functional diversity in the Jingui River China. Glob. Ecol. Conserv. 2024, 51, e02876. [Google Scholar] [CrossRef]
- Peng, X.; Cheng, X.; Zhu, D.; Huang, D. Application of functional feeding groups of macroinvertebrates in highly urbanized streams. AQUA—Water Infrastructure. Ecosyst. Soc. 2024, 73, 338–354. [Google Scholar] [CrossRef]
- Metcalfe, J.L. Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environ. Pollut. 1989, 60, 101–139. [Google Scholar] [CrossRef] [PubMed]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed.; EPA 841-B-99-002; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999; 337p. [Google Scholar]
- Barinova, S. Ecological mapping in application to aquatic ecosystems bioindication: Problems and methods. Int. J. Environ. Sci. Nat. Resour. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- LVĢMC. Pārskats par Virszemes un Pazemes Ūeņu Stāvokli 2021; gadā. LVĢMC: Rīga, Latvia, 2012. (In Latvian) [Google Scholar]
- Lemaire, G.G.; Rasmussen, J.J.; Höss, S.; Kramer, S.F.; Schittich, A.R.; Zhou, Y.; Köppl, C.J.; Traunspurger, W.; Bjerg, P.L.; McKnight, U.S. Land use contribution to spatiotemporal stream water and ecological quality: Implications for water resources management in peri-urban catchments. Ecol. Indic. 2022, 143, 109360. [Google Scholar] [CrossRef]
Type of Microhabitat | Habitat Characteristics |
---|---|
argyllal | silt, loam, clay (grain size < 0.063 mm) |
pelal | mud (grain size < 0.063 mm) |
psammal | sand (grain size 0.063–2 mm) |
akal | fine to medium-sized gravel (grain size 0.2–2 cm) |
lithal | coarse gravel, stones, cobbles, boulders, bedrock (grain size > 2 cm) |
phytal | algae, mosses, macrophytes |
pom | coarse and fine particulate organic matter |
other | other substrates |
Type of Substrate | Sampling Site | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Megalithal (>40 cm) | x | |||||||||
Macrolithal (>20–40 cm) | x | x | ||||||||
Mesolithal (>6–20 cm) | x | x | ||||||||
Microlithal (>2–6 cm) | x | x | ||||||||
Gravel | x | x | x | |||||||
Fine sand | x | x | x | x | x | x | ||||
Clay and its sediments predominate | x | x | ||||||||
FPOM (fine particulate organic matter) | x | x | x | x | x | x | x | x | x | |
CPOM (coarse particulate organic matter) | x | x | x | x | x | x | x | x | x | x |
Sampling Site | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total | |
Bivalvia | 2839 | 1214 | 688 | 2354 | 1762 | 752 | 2111 | 463 | 429 | 1563 | 14,175 |
Coelenterata | 12 | 12 | |||||||||
Coleoptera | 446 | 164 | 1250 | 2655 | 139 | 48 | 105 | 429 | 46 | 5282 | |
Crustacea | 6 | 12 | 1062 | 38 | 588 | 690 | 623 | 10,214 | 249 | 13,482 | |
Diptera | 4037 | 5439 | 12,591 | 3453 | 2898 | 2686 | 3268 | 105 | 1765 | 1852 | 38,094 |
Ephemeroptera | 1320 | 1418 | 3444 | 626 | 2576 | 2095 | 2102 | 1723 | 438 | 1225 | 16,967 |
Gastropoda | 3905 | 2721 | 1864 | 2492 | 2661 | 2260 | 2887 | 1181 | 706 | 2307 | 22,984 |
Heteroptera | 1305 | 172 | 114 | 12 | 412 | 604 | 38 | 556 | 3213 | ||
Hirudinea | 43 | 1202 | 49 | 125 | 1233 | 24 | 87 | 76 | 37 | 18 | 2894 |
Hydrachnidia | 49 | 51 | 1011 | 76 | 240 | 1189 | 37 | 57 | 1429 | 28 | 4167 |
Lepidoptera | 12 | 12 | |||||||||
Megaloptera | 6 | 12 | 38 | 48 | 38 | 142 | |||||
Nematoda | 19 | 19 | |||||||||
Odonata | 228 | 89 | 74 | 24 | 286 | 62 | 204 | 124 | 325 | 1416 | |
Oligochaeta | 883 | 3147 | 613 | 358 | 151 | 74 | 614 | 190 | 28 | 863 | 6921 |
Plecoptera | 6 | 1469 | 325 | 1800 | |||||||
Trichoptera | 272 | 330 | 5253 | 151 | 7969 | 1597 | 290 | 228 | 3042 | 74 | 19,206 |
Total number of specimens (ind./m2) | 15,345 | 15,959 | 28,432 | 10,757 | 23,206 | 11,466 | 12,376 | 5527 | 18,880 | 8838 |
Sampling Site | Type of the River | EMMQ | Maximum Possible Diversity, Hmax | Evenness Index, E | Saprobity Index, S |
---|---|---|---|---|---|
1 | Potamal | 23 G | 4.2 | 0.6 | 1.97 M |
2 | Potamal | 19 G | 3.8 | 0.5 | 2.07 M |
3 | Rhithral | 24 H | 4.2 | 0.6 | 1.75 M |
4 | Potamal | 16 M | 3.6 | 0.5 | 2.26 M |
5 | Rhithral | 25 H | 4.4 | 0.7 | 1.80 M |
6 | Potamal | 23 G | 4.0 | 0.7 | 2.03 M |
7 | Potamal | 22 G | 4.1 | 0.6 | 2.04 M |
8 | Potamal | 22 G | 3.9 | 0.8 | 1.99 M |
9 | Potamal | 22 G | 4.1 | 0.4 | 1.86 M |
10 | Potamal | n.a. | 3.9 | 0.6 | 2.16 M |
Sampling Site | T | EPT | ASPT | DSFI | H’ | LMI | LRMI |
---|---|---|---|---|---|---|---|
1 | 64 | 20 | 6.0 | 5 | 2.7 | 0.8 G | |
2 | 46 | 12 | 5.5 | 4 | 2.1 | 0.5 M | |
3 | 70 | 28 | 6.4 | 7 | 2.7 | >1 H | |
4 | 38 | 9 | 5.0 | 4 | 2.0 | 0.4 P | |
5 | 80 | 33 | 6.1 | 7 | 2.9 | >1 H | |
6 | 52 | 16 | 5.4 | 5 | 2.6 | 0.6 M | |
7 | 60 | 15 | 5.4 | 5 | 2.6 | 0.6 M | |
8 | 51 | 11 | 5.3 | 5 | 3.1 | 0.6 M | |
9 | 62 | 23 | 5.8 | 5 | 1.8 M | >1 H | |
10 | 50 | 7 | 5.1 | n.a. | 2.5 G | 0.7 G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostanda, M.; Spriņģe, G.; Ozoliņš, D.; Skuja, A.; Purmalis, O. Longitudinal Distribution of Benthic Macroinvertebrates Related to River Ecological Quality. Limnol. Rev. 2025, 25, 8. https://doi.org/10.3390/limnolrev25010008
Kostanda M, Spriņģe G, Ozoliņš D, Skuja A, Purmalis O. Longitudinal Distribution of Benthic Macroinvertebrates Related to River Ecological Quality. Limnological Review. 2025; 25(1):8. https://doi.org/10.3390/limnolrev25010008
Chicago/Turabian StyleKostanda, Māra, Gunta Spriņģe, Dāvis Ozoliņš, Agnija Skuja, and Oskars Purmalis. 2025. "Longitudinal Distribution of Benthic Macroinvertebrates Related to River Ecological Quality" Limnological Review 25, no. 1: 8. https://doi.org/10.3390/limnolrev25010008
APA StyleKostanda, M., Spriņģe, G., Ozoliņš, D., Skuja, A., & Purmalis, O. (2025). Longitudinal Distribution of Benthic Macroinvertebrates Related to River Ecological Quality. Limnological Review, 25(1), 8. https://doi.org/10.3390/limnolrev25010008