Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Calculation of the Optical Properties
2.4. Measurements of Optically Active Substances Concentration
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Temporal Variability of Light Attenuation and Rainfall Influence
3.3. Spatial Variability Among Sampling Sites
3.4. Influence of Rainfall on Light Attenuation
3.5. The Relationships Between Kd(λ) and Optically Active Substances
- KdPAR = 0.0852 × TSS + 0.0085 × Chla + 0.0508 × CDOM254nm (R2 = 0.91, p < 0.05), indicating that TSS is the primary driver of PAR attenuation, followed by CDOM and Chla.
- KdUVA = 0.1478 × TSS + 0.3872 × CDOM254nm (R2 = 0.94, p < 0.05): CDOM was the dominant factor, absorbing UVA radiation, with TSS as a secondary contributor.
- KdUVB = 0.1688 × TSS + 0.4983 × CDOM254nm (R2 = 0.94, p < 0.05), and CDOM dominated UVB attenuation, with a significant input from TSS.
4. Discussion
4.1. Key Drivers of Light Attenuation
4.2. Temporal and Spatial Variability
4.3. Ecological Implications
4.4. Management and Monitoring Implications
4.5. Broader Relevance and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Yang, X.; Huang, L.; Jiang, Q.; Zhou, Q. Attenuation of ultraviolet and photosynthetically active radiation in six Yunnan Plateau lakes in China based on seasonal field investigations. J. Limnol. 2020, 79, 151–163. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Y.; Zhang, Y.; Shi, K.; Jiang, C.; Zhang, Y. Attenuation of UVR and PAR in a clear and deep lake: Spatial distribution and affecting factors. Limnologica 2020, 84, 125798. [Google Scholar] [CrossRef]
- Harvey, E.T.; Walve, J.; Andersson, A.; Karlson, B.; Kratzer, S. Effects of optical properties on Secchi depth and implications for eutrophication management. Front. Mar. Sci. 2019, 5, 496. [Google Scholar] [CrossRef]
- Armengol, J.; Caputo, L.; Comerma, M.; Feijoó, C.; García, J.C.; Marcé, R.; Navarro, E.; Ordoñez, J. Sau reservoir’s light climate: Relationships between Secchi depth and light extinction coefficient. Limnetica 2003, 22, 195–210. [Google Scholar] [CrossRef]
- Lopes, F.A.; Davies-Colley, R.; Piazi, J.; Silveira, J.S.; Leite, A.C.; Lopes, N.I.A. Challenges for contact recreation in a tropical urban lake: Assessment using a water quality index. Environ. Dev. Sustain. 2020, 22, 5409–5423. [Google Scholar] [CrossRef]
- Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans: Causal Explanations and Adaptive Significances; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Karlsson, J.; Byström, P.; Ask, J.; Ask, P.; Persson, L.; Jansson, M. Light limitation of nutrient-poor lake ecosystems. Nature 2009, 460, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Thrane, J.-E.; Hessen, D.O.; Andersen, T. The absorption of light in lakes: Negative impact of dissolved organic carbon on primary productivity. Ecosystems 2014, 17, 1040–1052. [Google Scholar] [CrossRef]
- Bezerra, M.P.; Viana, E.A.P.; Brandão, L.P.M.; McGinnis, D.F.; Bezerra-Neto, J.F.; Barbosa, F.A.R. Water quality evaluation and dissolved organic matter characterization of a tropical hypereutrophic reservoir and its streams treated with Phoslock® and microbial bioremediation Enzilimp®. Environ. Sci. Pollut. Res. 2022, 29, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Brandão, L.P.M.; Staehr, P.A.; Bezerra-Neto, J.F. Seasonal changes in optical properties of two contrasting tropical freshwater systems. J. Limnol. 2016, 75, 508–519. [Google Scholar] [CrossRef]
- Resck, R.P.; Bezerra-Neto, J.F.; Pinto-Coelho, R.M. Nova batimetria e avaliação de parâmetros morfométricos da Lagoa da Pampulha (Belo Horizonte, Brasil). Geografias 2007, 3, 17–23. [Google Scholar] [CrossRef]
- Seidl, M.; Hadrich, B.; Palmier, L.; Petrucci, G.; Nascimento, N. Impact of urbanization (trends) on runoff behavior of Pampulha watersheds (Brazil). Environ. Sci. Pollut. Res. 2020, 27, 14259–14270. [Google Scholar] [CrossRef] [PubMed]
- Projeto MapBiomas—Coleção 9 da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. Available online: https://brasil.mapbiomas.org/ (accessed on 25 February 2025).
- Friese, K.; Schmidt, G.; de Lena, J.C.; Nalini, H.A., Jr.; Zachmann, D.W. Anthropogenic influence on the degradation of an urban lake–The Pampulha reservoir in Belo Horizonte, Minas Gerais, Brazil. Limnologica 2010, 40, 114–125. [Google Scholar] [CrossRef]
- Figueredo, C.C.; Pinto-Coelho, R.M.; Lopes, A.M.M.B.; Lima, P.H.O.; Gücker, B.; Giani, A. From intermittent to persistent cyanobacterial blooms: Identifying the main drivers in an urban tropical reservoir. J. Limnol. 2016, 75, 445–454. [Google Scholar] [CrossRef]
- Torres, I.C.; Resck, R.P.; Pinto-Coelho, R.M. Mass balance estimation of nitrogen, carbon, phosphorus and total suspended solids in the urban eutrophic, Pampulha reservoir, Brazil. Acta Limnol. Bras. 2007, 19, 79–91. [Google Scholar]
- Barçante, B.; Nascimento, N.O.; Silva, T.F.; Reis, L.A.; Giani, A. Cyanobacteria dynamics and phytoplankton species richness as a measure of waterbody recovery: Response to phosphorus removal treatment in a tropical eutrophic reservoir. Ecol. Indic. 2020, 117, 106702. [Google Scholar] [CrossRef]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Waste Water, 22nd ed.; American Water Works Association: Denver, CO, USA, 1998. [Google Scholar]
- Williams, C.J.; Frost, P.C.; Morales-Williams, A.M.; Larson, J.H.; Richardson, W.B.; Chiandet, A.S.; Xenopoulos, M.A. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Glob. Change Biol. 2015, 22, 613–626. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 14 February 2025).
- Vantrepotte, V.; Brunet, C.; Mériaux, X.; Lécuyer, É.; Dilligeard, E.; Santer, R. Mesoscale and seasonal bio-optical property variability in coastal waters using the example of the eastern English Channel during Spring of 2000. Proc. SPIE 2003, 4892, 577–588. [Google Scholar] [CrossRef]
- Rodrigues, T.; Alcântara, E.; Rotta, L.; Bernardo, N.; Watanabe, F. An investigation into the relationship between light absorption budget and trophic status in inland waters. Ecol. Indic. 2020, 115, 106410. [Google Scholar] [CrossRef]
- Ferreira, A.; Ciotti, Á.M.; Giannini, M.F.C. Variability in the light absorption coefficients of phytoplankton, non-algal particles, and colored dissolved organic matter in a subtropical bay (Brazil). Estuar. Coast. Shelf Sci. 2014, 139, 127. [Google Scholar] [CrossRef]
Parameters | Min | Median | Mean | Max | SD |
---|---|---|---|---|---|
Chla (mg/m3) | 1.28 | 48.11 | 57.07 | 177.06 | 41.51 |
TSS (mg/L) | 0.40 | 19.33 | 24.12 | 105.00 | 16.64 |
DOC (mg/L) | 2.34 | 19.62 | 21.73 | 90.11 | 15.10 |
CDOM254nm (m−1) | 11.15 | 15.13 | 16.62 | 30.76 | 4.15 |
Z1% PAR | 0.60 | 1.90 | 1.97 | 5.48 | 0.95 |
Z1% UVA | 0.18 | 0.53 | 0.52 | 0.94 | 0.16 |
Z1% UVB | 0.18 | 0.45 | 0.42 | 0.88 | 0.15 |
Secchi (m) | 0.20 | 0.58 | 0.60 | 1.40 | 0.29 |
KdPAR (m−1) | 0.84 | 2.42 | 3.03 | 7.67 | 1.75 |
KdUVB (m−1) | 4.88 | 8.77 | 9.97 | 26.09 | 3.90 |
KdUVA (m−1) | 5.22 | 10.16 | 12.36 | 26.07 | 4.84 |
Sampling Point | Parameter | High Rainfall Mean | Low Rainfall Mean | H Statistic | p-Value |
---|---|---|---|---|---|
Barragem | KdPAR | 2.4 | 1.8 | 10.5 | 0.001 |
KdUVA | 9.1 | 7.3 | 12.3 | 0.002 | |
KdUVB | 12.0 | 9.4 | 15.8 | 0.003 | |
Igrejinha | KdPAR | 3.1 | 2.5 | 10.5 | 0.001 |
KdUVA | 10.8 | 8.7 | 12.3 | 0.002 | |
KdUVB | 11.9 | 10.3 | 15.8 | 0.003 | |
Ilha | KdPAR | 6.0 | 6.6 | 10.5 | 0.001 |
KdUVA | 17.9 | 12.9 | 12.3 | 0.002 | |
KdUVB | 19.0 | 18.9 | 15.8 | 0.003 |
TSS (mg/L) | Chla (mg/m3) | DOC (mg/L) | CDOM254nm | |
---|---|---|---|---|
KdPAR (m−1) | 0.66 * | 0.50 * | 0.01 | 0.44 * |
KdUVA (m−1) | 0.58 * | 0.38 * | 0.10 | 0.59 * |
KdUVB (m−1) | 0.65 * | 0.39 * | 0.02 | 0.66 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amancio, R.C.H.; Pacheco, S.P.; Moura, K.A.F.; Valle, B.L.; Alves, J.T.C.; Melo, F.F.; Silva, V.J.G.; Botelho, L.S.; Rocha, R.T.; Pelegrine, D.R.; et al. Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir. Limnol. Rev. 2025, 25, 7. https://doi.org/10.3390/limnolrev25010007
Amancio RCH, Pacheco SP, Moura KAF, Valle BL, Alves JTC, Melo FF, Silva VJG, Botelho LS, Rocha RT, Pelegrine DR, et al. Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir. Limnological Review. 2025; 25(1):7. https://doi.org/10.3390/limnolrev25010007
Chicago/Turabian StyleAmancio, Renata C. H., Stella P. Pacheco, Karen A. F. Moura, Bianca L. Valle, Julia T. C. Alves, Fernanda F. Melo, Vitor J. G. Silva, Lívia S. Botelho, Raquel T. Rocha, Daiana R. Pelegrine, and et al. 2025. "Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir" Limnological Review 25, no. 1: 7. https://doi.org/10.3390/limnolrev25010007
APA StyleAmancio, R. C. H., Pacheco, S. P., Moura, K. A. F., Valle, B. L., Alves, J. T. C., Melo, F. F., Silva, V. J. G., Botelho, L. S., Rocha, R. T., Pelegrine, D. R., Salgueiro, T. M., Tadeu, C. M. O., Elian, V. G., Ducca, G. A., Zavaski, A. G., Moreira, R. L., Sá, W. M. S., Eller, E. E. O., de Oliveira-Junior, R. B., ... Bezerra-Neto, J. F. (2025). Influence of Optically Active Substances on Light Attenuation in a Tropical Eutrophic Urban Reservoir. Limnological Review, 25(1), 7. https://doi.org/10.3390/limnolrev25010007