Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height
Abstract
:1. Introduction
1.1. Lake Charles
1.2. Cypress Age–DBH Relationships
2. Materials and Methods
2.1. Lake Charles Buttress Inflections
2.2. Cypress Age–DBH Relationships
3. Results
3.1. Cypress Age–DBH Relationships
3.2. Lake Charles
4. Discussion
4.1. Cypress Age–DBH Relationships
4.2. Lake Charles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Alabama |
cm | centimeters |
DBH | Diameter at breast height |
FIA | Forest Inventory and Analysis |
FL | Florida |
KY | Kentucky |
LA | Louisiana |
m | meters |
MD | Maryland |
MS | Mississippi |
NC | North Carolina |
NGVD29 | National Geodetic Vertical Datum of 1929 |
NP | Normal pool |
p | Probability value |
R2 | Coefficient of determination |
RMSE | Root mean square error |
SWFWMD | Southwest Florida Water Management District |
T. | Taxodium |
T. asc. | Taxodium ascendens |
T. dis. | Taxodium distichum |
TN | Tennessee |
US | United States |
VA | Virginia |
References
- Carr, D.W.; Leeper, D.A.; Rochow, T.F. Comparison of Six Biologic Indicators of Hydrology and the Landward Extent of Hydric Soils in West-Central Florida, USA Cypress Domes. Wetlands 2006, 26, 1012–1019. [Google Scholar] [CrossRef]
- Patterson, L.; Cooper, D.J. The Use of Hydrologic and Ecological Indicators for the Restoration of Drainage Ditches and Water Diversions in a Mountain Fen, Cascade Range, California. Wetlands 2007, 27, 290–304. [Google Scholar] [CrossRef]
- David, G.C.L.; Hamill, D. Is the Ordinary High Water Mark Ordinarily at Bankfull? Applying a Weight-of-evidence Approach to Stream Delineation. J. Am. Water Resour. Assoc. 2024, 60, 1029–1057. [Google Scholar] [CrossRef]
- Berkowitz, J.F.; Pietroski, J.P. Water-Stained Leaves: Formation and Application as a Field Indicator of Wetland Hydrology. Wetlands 2021, 41, 98. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0); U.S. Army Corps of Engineers: Washington, DC, USA, 2010. [Google Scholar]
- Mattoon, W.R. The Southern Cypress; Bulletin/United States Department of Agriculture; no. 272; U.S. Department of Agriculture: Washington, DC, USA, 1915. [Google Scholar]
- Burns, R.M.; Honkala, B.H. Silvics of North America: Volume 1. Conifers; Agriculture Handbook 654; United States Department of Agriculture (USDA), Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Ewel, K.C. Pondcypress Swamps. In Southern Forested Wetlands: Ecology and Management; Messina, M.G., Conner, W.H., Eds.; Routledge: London, UK, 1998; ISBN 9780429342653. [Google Scholar]
- Hull, H.C., Jr.; Post, J.M., Jr.; Lopez, M.; Perry, R.G. Analysis of Water Level Indicators in Wetlands: Implications for the Design of Surface Water Management Systems; American Water Resources Association: Tampa, FL, USA, 1989; pp. 195–204. [Google Scholar]
- Southwest Florida Water Management District. Northern Tampa Bay Minimum Flows and Levels White Papers—Establishment of Minimum Levels in Palustrine Cypress Wetlands; Southwest Florida Water Management District: Brooksville, FL, USA, 1999. [Google Scholar]
- Southwest Florida Water Management District. Northern Tampa Bay Minimum Flows and Levels White Papers—Establishment of Minimum Levels for Category 1 and 2 Lakes; Southwest Florida Water Management District: Brooksville, FL, USA, 1999. [Google Scholar]
- Bedient, P.; Brinson, M.; Dierberg, F.; Gorelick, S.; Jenkins, K.; Ross, D.; Wagner, K.; Stephenson, D. Report of the Scientific Peer Review Panel on the Data, Theories, and Methodologies Supporting the Minimum Flows and Levels Rule for the Northern Tampa Bay Area, Florida; Prepared for the Southwest Florida Water Management District: Brooksville, FL, USA, 1999. [Google Scholar]
- Dierberg, F.; Wagner, K. A Review of “A Multiple-Parameter Approach for Establishing Minimum Levels for Category 3 Lakes of the Southwest Florida Water Management District” (June 2001 Draft) by D. Leeper, M. Kelly, A. Munson, and R. Gant; Prepared for the Southwest Florida Water Management District: Brooksville, FL, USA, 2001. [Google Scholar]
- Cameron, C.; Leeper, D.; Herrick, G.; Basso, R.; Venning, T.J. Validation of the Cypress Offset and Mesic Wetland Offset for Development of Minimum Wetland and Lake Levels; Southwest Florida Water Management District: Brooksville, FL, USA, 2022. [Google Scholar]
- Cameron, C.R.; Hancock, M.C.; Carr, D.W.; Hurst, M.K.; Campbell, D.E.; Venning, T.J.; Tara, P.D.; Holzwart, K.R. Hydroperiods of Cypress Domes in West-Central Florida, USA. Wetlands 2020, 40, 2225–2234. [Google Scholar] [CrossRef]
- Basso, R.; LeMond, L.; Leeper, D.; Cameron, C.; Qi, J.; Weinstein, D. Northern Tampa Bay Lake and Wetland Status Assessment; Southwest Florida Water Management District: Brooksville, FL, USA, 2020. [Google Scholar]
- Cameron, C.; Shea, C.; Nowicki, R.; Schmutz, D.; LaRoche, J.; Hancock, M. Hydrology of Cypress Domes: A Review. Wetlands Ecol. Manag. 2023, 31, 673–696. [Google Scholar] [CrossRef]
- Southwest Florida Water Management District. Tampa Bay Water Wetland Assessment Procedure (WAP) for Isolated Wetlands; Southwest Florida Water Management District: Brooksville, FL, USA, 2005. [Google Scholar]
- Haag, K.H.; Lee, T.M.; Herndon, D.C. Bathymetry and Vegetation in Isolated Marsh and Cypress Wetlands in the Northern Tampa Bay Area, 2000–2004; U.S. Geological Survey: Washington, DC, USA, 2005. [Google Scholar]
- Clewell, A.F.; Raymond, C.; Coultas, C.L.; Dennis, W.M.; Kelly, J.P. Spatially Narrow Wet Prairies. Castanea 2009, 74, 146–159. [Google Scholar] [CrossRef]
- Nilsson, K.A.; Rains, M.C.; Lewis, D.B.; Trout, K.E. Hydrologic Characterization of 56 Geographically Isolated Wetlands in West-Central Florida Using a Probabilistic Method. Wetl. Ecol. Manag. 2013, 21, 1–14. [Google Scholar] [CrossRef]
- Lewis, D.B.; Feit, S.J. Connecting Carbon and Nitrogen Storage in Rural Wetland Soil to Groundwater Abstraction for Urban Water Supply. Glob. Change Biol. 2015, 21, 1704–1714. [Google Scholar] [CrossRef]
- Bartholomew, M.K.; Anderson, C.J.; Berkowitz, J. Soil Conditions Following Hydrologic Restoration in Cypress Dome Wetlands. Wetlands 2019, 39, 185–196. [Google Scholar] [CrossRef]
- Bartholomew, M.K.; Anderson, C.J.; Berkowitz, J.F. Wetland Vegetation Response to Groundwater Pumping and Hydrologic Recovery. Wetlands 2020, 40, 2609–2619. [Google Scholar] [CrossRef]
- Powell, K.; Wynn, J.G.; Rains, M.C.; Stewart, M.T.; Emery, S. Soil Indicators of Hydrologic Health and Resilience in Cypress Domes of West-Central Florida. Ecol. Indic. 2019, 97, 269–279. [Google Scholar] [CrossRef]
- Alshehri, F.; Ross, M. Calibrating Complexity: A Comprehensive Approach to Developing Stage–Storage–Discharge Relationships for Geographically Isolated Wetlands (GIWs) in W-C Florida. Water 2023, 15, 3878. [Google Scholar] [CrossRef]
- Balerna, J.A.; Kramer, A.M.; Landry, S.M.; Rains, M.C.; Lewis, D.B. Wetland Hydrological Change and Recovery across Three Decades of Shifting Groundwater Management. J. Hydrol. 2024, 644, 132052. [Google Scholar] [CrossRef]
- Balerna, J.A.; Kramer, A.M.; Landry, S.M.; Rains, M.C.; Lewis, D.B. Synergistic Effects of Precipitation and Groundwater Extraction on Freshwater Wetland Inundation. J. Environ. Manag. 2023, 337, 117690. [Google Scholar] [CrossRef]
- Hogg, W.; Hayes, E.; Keesecker, D.; Kiehn, W.; Shea, C. Tampa Bay Water Recovery Assessment: Final Report of Findings; Tampa Bay Water: Clearwater, FL, USA, 2020. [Google Scholar]
- Kurz, H.; Demaree, D. Cypress Buttresses and Knees in Relation to Water and Air. Ecology 1934, 15, 36–41. [Google Scholar] [CrossRef]
- Varnell, L.M. The Relationship between Inundation History and Baldcypress Stem Form in a Virginia Floodplain Swamp. Wetlands 1998, 18, 176–183. [Google Scholar] [CrossRef]
- Walsh, C.; Dawson, J. Variation in Buttressing Form and Stem Volume Ratio of Baldcypress Trees. Trans. Ill. State Acad. Sci. 2014, 107, 5–11. [Google Scholar]
- Venning, T.J.; Cameron, C. Revised Minimum and Guidance Levels Based on Reevaluation of Levels Adopted for Lake Charles in Hillsborough County, Florida; Southwest Florida Water Management District: Brooksville, FL, USA, 2020. [Google Scholar]
- McCarthy, J.; Weetman, G. Age and Size Structure of Gap-Dynamic, Old-Growth Boreal Forest Stands in Newfoundland. Silva Fenn. 2006, 40, 209–230. [Google Scholar] [CrossRef]
- Hart, P.J. Tree Growth and Age in an Ancient Hawaiian Wet Forest: Vegetation Dynamics at Two Spatial Scales. J. Trop. Ecol. 2010, 26, 1–11. [Google Scholar] [CrossRef]
- Swetnam, T.L.; Brown, P.M. Comparing Selected Fire Regime Condition Class (FRCC) and LANDFIRE Vegetation Model Results with Tree-Ring Data. Int. J. Wildland Fire 2010, 19, 1–13. [Google Scholar] [CrossRef]
- Stevens, J.T.; Safford, H.D.; North, M.P.; Fried, J.S.; Gray, A.N.; Brown, P.M.; Dolanc, C.R.; Dobrowski, S.Z.; Falk, D.A.; Farris, C.A.; et al. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE 2016, 11, e0147688. [Google Scholar] [CrossRef]
- Peper, P.J.; Alzate, C.P.; McNeil, J.W.; Hashemi, J. Allometric Equations for Urban Ash Trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada. Urban For. Urban Green. 2014, 13, 175–183. [Google Scholar] [CrossRef]
- Dey, D.C.; Dwyer, J.; Wiedenbeck, J. Relationship between Tree Value, Diameter, and Age in High-Quality Sugar Maple (Acer Saccharum) on the Menominee Reservation, Wisconsin. J. For. 2017, 115, 397–405. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, D.; Choi, J. Growth Pattern Analysis of Major Coniferous Tree Species in South Korea. For. Sci. Technol. 2018, 14, 1–6. [Google Scholar] [CrossRef]
- Su, R.; Wu, Q.; Yang, Y.; Hu, T. Relationship between Diameter at Breast Height and Tree Age in Populations of a Rare and Endangered Plant, Davidia involucrata. Pol. J. Ecol. 2021, 69, 84–95. [Google Scholar] [CrossRef]
- Sánchez-González, M.; Tomé, M.; Montero, G. Modelling Height and Diameter Growth of Dominant Cork Oak Trees in Spain. Ann. For. Sci. 2005, 62, 633–643. [Google Scholar] [CrossRef]
- Sharma, M. Modelling Climate Effects on Diameter Growth of Red Pine Trees in Boreal Ontario, Canada. Trees For. People 2021, 4, 100064. [Google Scholar] [CrossRef]
- Rohner, B.; Bugmann, H.; Bigler, C. Towards Non-Destructive Estimation of Tree Age. For. Ecol. Manag. 2013, 304, 286–295. [Google Scholar] [CrossRef]
- Rodgers, J.A.; Schwikert, S.T.; Shapiro-Wenner, A. Nesting Habitat of Wood Storks in North and Central Florida, USA. Colon. Waterbirds 1996, 19, 1–21. [Google Scholar] [CrossRef]
- Matsushita, M.; Takata, K.; Hitsuma, G.; Yagihashi, T.; Noguchi, M.; Shibata, M.; Masaki, T. A Novel Growth Model Evaluating Age–Size Effect on Long-term Trends in Tree Growth. Funct. Ecol. 2015, 29, 1250–1259. [Google Scholar] [CrossRef]
- McPherson, E.G.; van Doorn, N.S.; Peper, P.J. Urban Tree Database and Allometric Equations; Gen. Tech. Rep. PSW-GTR-253; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2016; 86p. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, H.-S.; Park, S.-I.; Park, H.-J.; Lee, S.-H. Development of Site Index Curves and Height-DBH Growth Model of Larix kaempferi for Deogyu Mountain in South Korea. For. Sci. Technol. 2018, 14, 145–150. [Google Scholar] [CrossRef]
- Socha, J.; Tymińska-Czabańska, L.; Bronisz, K.; Zięba, S.; Hawryło, P. Regional Height Growth Models for Scots Pine in Poland. Sci. Rep. 2021, 11, 10330. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, B.; Ren, Y.; Yang, G. Regionally Compatible Individual Tree Growth Model under the Combined Influence of Environment and Competition. Plants 2023, 12, 2697. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Ewel, K.C. Comparative Biomass and Growth of Cypress in Florida Wetlands. Am. Midl. Nat. 1979, 101, 417. [Google Scholar] [CrossRef]
- Ewel, K.C.; Wickenheiser, L.P. Effect of Swamp Size on Growth Rates of Cypress (Taxodium distichum) Trees. Am. Midl. Nat. 1988, 120, 362. [Google Scholar] [CrossRef]
- Ewel, K.C.; Davis, H.T. Response of Pondcypress (Taxodium distichurn var. nutans) to Thinning. South. J. Appl. For. 1992, 16, 175–177. [Google Scholar] [CrossRef]
- Hesse, I.D.; Day, J.W., Jr.; Doyle, T.W. Long-Term Growth Enhancement of Baldcypress (Taxodium distichum) from Municipal Wastewater Application. Environ. Manag. 1998, 22, 119–127. [Google Scholar] [CrossRef]
- Keim, R.F.; Chambers, J.L.; Hughes, M.S.; Dimov, L.D.; Conner, W.H.; Shaffer, G.P.; Gardiner, E.S.; Day, J.W. Long-Term Success of Stump Sprouts in High-Graded Baldcypress–Water Tupelo Swamps in the Mississippi Delta. For. Ecol. Manag. 2006, 234, 24–33. [Google Scholar] [CrossRef]
- Keim, R.F.; Amos, J.B. Dendrochronological Analysis of Baldcypress (Taxodium distichum) Responses to Climate and Contrasting Flood Regimes. Can. J. For. Res. 2012, 42, 423–436. [Google Scholar] [CrossRef]
- Keim, R.F.; Dean, T.J.; Chambers, J.L. Flooding Effects on Stand Development in Cypress-Tupelo. In Proceedings of the 15th Biennial Southern Silvicultural Research Conference, Hot Springs, AR, USA, 17–20 November 2008; e-Gen. Tech. Rep., SRS-GTR-175. Guldin James, M., Ed.; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2013; Volume 175, pp. 431–437. [Google Scholar]
- Wang, C.; Li, C.; Wei, H.; Xie, Y.; Han, W. Effects of Long-Term Periodic Submergence on Photosynthesis and Growth of Taxodium distichum and Taxodium ascendens Saplings in the Hydro-Fluctuation Zone of the Three Gorges Reservoir of China. PLoS ONE 2016, 11, e0162867. [Google Scholar] [CrossRef]
- Allen, S.T.; Keim, R.F.; Dean, T.J. Contrasting Effects of Flooding on Tree Growth and Stand Density Determine Aboveground Production, in Baldcypress Forests. For. Ecol. Manag. 2019, 432, 345–355. [Google Scholar] [CrossRef]
- Lundberg, C.J.; Shaffer, G.P.; Wood, W.B.; Day, J.W. Growth Rates of Baldcypress (Taxodium distichum) Seedlings in a Treated Effluent Assimilation Marsh. Ecol. Eng. 2011, 37, 549–553. [Google Scholar] [CrossRef]
- Ding, D.; Liu, M.; Arif, M.; Yuan, Z.; Li, J.; Hu, X.; Zheng, J.; Li, C. Responses of Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus to Periodic Submergence in Mega-Reservoir: Growth of Taxodium distichum and Taxodium ascendens. Plants 2021, 10, 2040. [Google Scholar] [CrossRef]
- Krinard, R.M.; Johnson, R.L. 21-Year Growth and Development of Baldcypress Planted on a Flood-Prone Site; Res. Note SO-217; U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1976; Volume 217, 4p. [Google Scholar]
- Visser, J.M.; Sasser, C.E. Changes in Tree Species Composition, Structure and Growth in a Bald Cypress-Water Tupelo Swamp Forest, 1980–1990. For. Ecol. Manag. 1995, 72, 119–129. [Google Scholar] [CrossRef]
- Ewel, K.C.; Parendes, L.A. Usefulness of Annual Growth Rings of Cypress Trees (Taxodium distichum) for Impact Analysis. Tree-Ring Bull. 1984, 44, 39–43. [Google Scholar]
- Young, P.J.; Megonigal, J.P.; Sharitz, R.R.; Day, F.P. False Ring Formation in Baldcypress (Taxodium distichum) Saplings under Two Flooding Regimes. Wetlands 1993, 13, 293–298. [Google Scholar] [CrossRef]
- Parresol, B.R.; Hotvedt, J.E. Diameter Measurement in Bald Cypress. For. Ecol. Manag. 1990, 33–34, 509–515. [Google Scholar] [CrossRef]
- Lickey, E.B.; Watson, F.D.; Walker, G.L. Differences in Bark Thickness among Populations of Baldcypress [Taxodium distichum (L.) Rich. var. distichum] and Pondcypress [T. distichum var. imbricarium (Nuttall) Croom]. Castanea 2002, 67, 33–41. [Google Scholar]
- Degravelles, W. Two-Year Growth and Mortality of Sub-Canopy Baldcypress (Taxodium distichum [L.] Rich.) in Artificial Canopy Gaps in a North Carolina Swamp; Clemson University: Clemson, SC, USA, 2010. [Google Scholar]
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; Gen. Tech. Rep. SRS-80; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005; Volume 080, 85p. [Google Scholar] [CrossRef]
- U.S. Forest Service. Nationwide Forest Inventory Field Guide, Version 9.4; U.S. Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- U.S. Forest Service. The Forest Inventory and Analysis Database User Guide (NFI), Version 9.3; U.S. Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Zhang, Y.; He, H.S.; Dijak, W.D.; Yang, J.; Shifley, S.R.; Palik, B.J. Integration of Satellite Imagery and Forest Inventory in Mapping Dominant and Associated Species at a Regional Scale. Environ. Manag. 2009, 44, 312–323. [Google Scholar] [CrossRef]
- Odom, R.H.; Ford, W.M. Developing Species-Age Cohorts from Forest Inventory and Analysis Data to Parameterize a Forest Landscape Model. Int. J. For. Res. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Wang, W.J.; Thompson, F.R.; He, H.S.; Fraser, J.S.; Dijak, W.D.; Jones-Farrand, T. Climate Change and Tree Harvest Interact to Affect Future Tree Species Distribution Changes. J. Ecol. 2019, 107, 1901–1917. [Google Scholar] [CrossRef]
- PRISM. PRISM Climate Group, Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 27 January 2025).
- Arthur, J.D.; Baker, A.E.; Cichon, J.R.; Wood, A.R.; Rudin, A. Florida Aquifer Vulnerability Assessment (FAVA): Contamination Potential of Florida’s Principal Aquifer Systems; Florida Geological Survey: Tallahassee, FL, USA, 2005. [Google Scholar]
- Wolock, D.M. Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States: U.S. Geological Survey Data Release; U.S. Geological Survey: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Wieczorek, M. Area-and Depth-Weighted Averages of Selected SSURGO Variables for the Conterminous United States and District of Columbia; No. 866; U.S. Geological Survey: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Penfound, W.T.; Watkins, A.G. Phytosociological Studies in the Pinelands of Southeastern Louisiana. Am. Midl. Nat. 1937, 18, 661. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Taylor, J.R.; Benson, K.B. Estimating Primary Productivity of Forested Wetland Communities in Different Hydrologic Landscapes. Landsc. Ecol. 1991, 5, 75–92. [Google Scholar] [CrossRef]
- Krinard, R.M.; Johnson, R.L. Growth of a 31-Year Old Baldcypress Plantation; USDA Forest Service Southern Forest Experiment Station: Asheville, NC, USA, 1987. [Google Scholar]
- Williston, H.L.; Shropshire, F.W.; Balmer, W.E. Cypress Management: A Forgotten Opportunity; USDA Forest Service, Southeastern Area State and Private Forestry: Fairbanks, AK, USA, 1980. [Google Scholar]
- Dicke, S.G.; Toliver, J.R. Effects of Crown Thinning on Baldcypress Height, Diameter, and Volume Growth. South. J. Appl. For. 1988, 12, 252–256. [Google Scholar] [CrossRef]
- Shankman, D. Forest Regeneration on Abandoned Meanders of a Coastal Plain River in Western Tennessee. Castanea 1991, 56, 157–167. [Google Scholar]
- Beaven, G.F.; Oosting, H.J. Pocomoke Swamp: A Study of a Cypress Swamp on the Eastern Shore of Maryland. Bull. Torrey Bot. Club 1939, 66, 367–389. [Google Scholar] [CrossRef]
- Huang, W. Influence of Different Taxodium Ascendens Stands on the Open Ranges and System Performance in Jiangsu Province, China. Agrofor. Syst. 1997, 37, 241–252. [Google Scholar] [CrossRef]
- Keeland, B.D.; Conner, W.H. Natural Regeneration and Growth of Taxodium distichum (L.) Rich. in Lake Chicot, Louisiana after 44 Years of Flooding. Wetlands 1999, 19, 149–155. [Google Scholar] [CrossRef]
- Oren, R.; Phillips, N.; Ewers, B.E.; Pataki, D.E.; Megonigal, J.P. Sap-Flux-Scaled Transpiration Responses to Light, Vapor Pressure Deficit, and Leaf Area Reduction in a Flooded Taxodium distichum Forest. Tree Physiol. 1999, 19, 337–347. [Google Scholar] [CrossRef]
- Popovic, V.; Ivetić, V.; Šijačić-Nikolić, M.; Knežević, R.; Matović, B.; Lavadinović, V. Effect of Pre-Treatments on Seed Germination Rate from Different Bald Cypress (Taxodium distichum Rich.) Trees. For. Ideas 2012, 18, 163–168. [Google Scholar]
- Powell, A.S. Response of Baldcypress (Taxodium distichum) at Different Life Stages to Flooding and Salinity; East Carolina University: Greenville, NC, USA, 2014. [Google Scholar]
- Pietrzykowski, M.; Daniels, W.L.; Koropchak, S.C. Microtopographic Effects on Growth of Young Bald Cypress (Taxodium distichum L.) in a Created Freshwater Forested Wetland in Southeastern Virginia. Ecol. Eng. 2015, 83, 135–143. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Smith, W.K. Growing Season Ecophysiology of Taxodium distichum (L.) Rich. (Bald Cypress) Saplings in a Restored Wetland: A Baseline for Restoration Practice. Botany 2016, 94, 1115–1125. [Google Scholar] [CrossRef]
- Li, B.; Du, C.; Yuan, X.; Willison, J.H.M.; Xiao, H. Suitability of Taxodium distichum for Afforesting the Littoral Zone of the Three Gorges Reservoir. PLoS ONE 2016, 11, e0146664. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, B.; Yu, C.; Yin, Y.; Zhang, Y. Comparative Study on DBH Growth and Wood Density of Taxodium Hybrid ‘Zhongshanshan 118’ and Taxodium distichum. J. Nanjing For. Univ. 2019, 43, 201. [Google Scholar] [CrossRef]
- Qian, Z.; Wu, L.; Tang, L. Effects of Flooding and Endogenous Hormone on the Formation of Knee Roots in Taxodium ascendens. Front. Plant Sci. 2022, 13, 803619. [Google Scholar] [CrossRef]
- Every, C.; Aust, W.M.; Carter, D.R.; Coates, T.A.; Schilling, E.B. Thirty-Five-Year Timber Harvesting Disturbance Effects on Composition and Biomass of Tupelo-Cypress (Nyssa-Taxodium) Forested Wetlands, Southwest Alabama, USA. Wetlands 2023, 43, 106. [Google Scholar] [CrossRef]
- Ismail, M.F.; Bahnasy, M.I.; El-Etreby, M.A.; Abbaas, M.M. Biomass and Some Wood Properties of Taxodium distichum (L.) Rich. Grown in Two Provenances in Egypt. Hortic. Res. J. 2023, 1, 85–95. [Google Scholar] [CrossRef]
- Xu, Y.; He, N.; Li, Q.; Lin, H. Study on Variation of Wood Bending Properties among Trees of Taxodium Ascendens Plantation. J. Phys. Conf. Ser. 2024, 2920, 012014. [Google Scholar] [CrossRef]
- Lu, J.; Huang, C.; Schleeweis, K.; Zou, Z.; Gong, W. Derivation of Age Estimates for All Trees Surveyed by Field Crew Through the United States Forest Inventory and Analysis Program. SSRN 2024, 5063219. [Google Scholar] [CrossRef]
- Lee, T.M.; Fouad, G.; Rains, K. Ranking the Inundation Potential of Palustrine Wetlands in the Northern Tampa Bay Area; Prepared for Tampa Bay Water: Clearwater, FL, USA, 2022. [Google Scholar]
- Bertassello, L.E.; Rao, P.S.C.; Jawitz, J.W.; Aubeneau, A.F.; Botter, G. Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrol. Process. 2020, 34, 1460–1474. [Google Scholar] [CrossRef]
Study | US State 1 | Species 2 | Method | Sample | Data Points 3 |
---|---|---|---|---|---|
Mattoon [6] | MD, LA | T. dis. | Rings | Groups, Individuals | 78 |
Rodgers et al. [45] | FL | T. dis. | Rings | Groups | 6 |
Mitsch and Ewel. [51] | FL | T. dis. | Rings | Individuals | 10 |
Wang et al. [58] | Outside US | T. dis. | Stand age | Groups | - |
Ding et al. [61] | Outside US | T. dis. | Stand age | Groups | - |
Krinard and Johnson. [62] | MS | T. dis. | Stand age | Groups | 1 |
Ewel and Parendes [64] | FL | T. asc. | Rings | Groups | 2 |
Degravelles [68] | NC | T. dis. | Rings | Individuals | 63 |
Penfound et al. [79] | LA | T. asc. | Rings | Groups | 1 |
Mitsch et al. [80] | KY | T. dis. | Rings | Groups | 1 |
Krinard and Johnson [81] | MS | T. dis. | Stand age | Groups | 1 |
Williston et al. [82] | MS | T. dis. | Stand age | Groups | 1 |
Dicke and Toliver [83] | LA | T. dis. | Stand age | Groups | 1 |
Shankman [84] | TN | T. dis. | Rings | Groups | 24 |
Beaven et al. [85] | MD | T. dis. | Stand age | Individuals | 2 |
Huang et al. [86] | Outside US | T. asc. | Stand age | Groups | - |
Keeland and Conner [87] | LA | T. dis. | Stand age | Groups | 6 |
Oren et al. [88] | NC | T. dis. | Stand age | Groups | 3 |
Popovic et al. [89] | Outside US | T. dis. | Stand age | Groups | - |
Powell [90] | NC | T. dis. | Rings | Groups | 5 |
Pietrzykowski et al. [91] | VA | T. dis. | Stand age | Groups | 5 |
Carmichael et al. [92] | NC | T. dis. | Stand age | Groups | 1 |
Li et al. [93] | Outside US | T. dis. | Stand age | Groups | - |
Yueha et al. [94] | Outside US | T. asc. | Rings | Groups | - |
Qian et al. [95] | Outside US | T. asc. | Stand age | Groups | - |
Every et al. [96] | AL | T. dis. | Stand age | Groups | 4 |
Ismail et al. [97] | Outside US | T. dis. | Stand age | Groups | - |
Xu et al. [98] | Outside US | T. asc. | Rings | Individuals | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameron, C.R.; Venning, T.J. Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height. Limnol. Rev. 2025, 25, 9. https://doi.org/10.3390/limnolrev25010009
Cameron CR, Venning TJ. Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height. Limnological Review. 2025; 25(1):9. https://doi.org/10.3390/limnolrev25010009
Chicago/Turabian StyleCameron, Cortney R., and Thomas J. Venning. 2025. "Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height" Limnological Review 25, no. 1: 9. https://doi.org/10.3390/limnolrev25010009
APA StyleCameron, C. R., & Venning, T. J. (2025). Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height. Limnological Review, 25(1), 9. https://doi.org/10.3390/limnolrev25010009