Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry
Abstract
:1. Introduction
2. A Snapshot of EGCG Applications
3. Separation and Identification of Green Tea Catechins/EGCG
3.1. MS-Coupled Chromatographic Techniques for Detection and Identification of Catechins/EGCG
3.2. Direct MS Analysis of EGCG
4. Challenges and Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, I.C.; van de Putte, B.; Hollman, P.C. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food. Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Balentine, D.A.; Wiseman, S.A.; Bouwens, L.C. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 1997, 37, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Suga, K.; Nakachi, K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev. Med. 1997, 26, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea and Health: Studies in Humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [Green Version]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Heiss, R.J.; Heiss, M.L. The Story of Tea: A Cultural History and Drinking Guide; Ten Speed Press: Berckley, CA, USA, 2007; p. 124. [Google Scholar]
- Chow, K.; Kramer, I. All the Tea in China; Dashwood, R.H., Ed.; China Books & Periodicals Inc.: San Francisco, CA, USA, 1990; p. 125. [Google Scholar]
- Battle, W. The World Tea Encyclopaedia: The World of Tea Explored and Explained from Bush to Brew; Troubador Publishing: Matador, UK, 2017; pp. 105–107, 162–164. [Google Scholar]
- Kim, Y.-M. (Ed.) Tradition—The Way of Tea: A Lifestyle Aesthetic for Learning the Depth and Enlightenment of Life; Pictorial Korea, Korean Overseas Culture and Information Service: Sejong-si, Korea, 2004; p. 26. [Google Scholar]
- Richardson, L.B. Modern Tea: A Fresh Look at an Ancient Beverage; Gilbut Publishing: Seoul, Korea, 2014; p. 51. [Google Scholar]
- Henning, S.M.; Fajardo-Lira, C.; Lee, H.W.; Youssefian, A.A.; Go, V.L.W.; Heber, D. Catechin Content of 18 teas and a Green Tea extract supplement correlates with the antioxidant capacity. Nutr. Cancer 2003, 45, 226–235. [Google Scholar] [CrossRef]
- Gramza, A.; Khokhar, S.; Yoko, S.; Gliszczynska-Swiglo, A.; Hes, M.; Korczak, J. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur. J. Lipid Sci. Technol. 2006, 108, 351–362. [Google Scholar] [CrossRef]
- Enko, J.; Gliszczyńska-Świgło, A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A 2015, 32, 1234–1242. [Google Scholar] [CrossRef]
- Albrethsen, J. Reproducibility in Protein Profiling by MALDI-TOF Mass Spectrometry. Clin. Chem. 2007, 53, 852–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidransky, D.; Irizarry, R.; Califano, J.A.; Li, X.; Ren, H.; Benoit, N.; Mao, L. Serum protein MALDI profiling to distinguish upper aerodigestive tract cancer patients from control subjects. J. Natl. Cancer Inst. 2003, 95, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Ilina, E.N.; Borovskaya, A.D.; Malakhova, M.M.; Vereshchagin, V.A.; Kubanova, A.A.; Kruglov, A.N.; Svistunova, T.S.; Gazarian, A.O.; Maier, T.; Kostrzewa, M.; et al. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 2009, 11, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigner, U.; Holfelder, M.; Oberdorfer, K.; Betz-Wild, U.; Bertsch, D.; Fahr, A.M. Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin. Lab. 2009, 55, 289–296. [Google Scholar] [PubMed]
- Oswald-Richter, K.A.; Beachboard, D.C.; Seeley, E.H.; Abraham, S.; Shepherd, B.E.; Jenkins, C.A.; Culver, D.A.; Caprioli, R.M.; Drake, W.P. Dual Analysis for Mycobacteria and Propionibacteria in Sarcoidosis BAL. J. Clin. Immunol. 2012, 32, 1129–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Zaidi-Ainouch, Z.; Gallien, S.; Domon, B. Mass spectrometry–based detection and quantification of plasma glycoproteins using selective reaction monitoring. Nat. Protoc. 2012, 7, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Ilag, L.; Termopoli, V.; Mendez, L. Advances in MS-Based Analytical Methods: Innovations and Future Trends. J. Anal. Methods Chem. 2018, 2018, 2084567. [Google Scholar] [CrossRef] [PubMed]
- Law, K.P.; Larkin, J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399, 2597–2622. [Google Scholar] [CrossRef]
- Wang, X.-N.; Tang, W.; Gordon, A.; Wang, H.-Y.; Xu, L.; Li, P.; Li, B. Porous TiO2 Film Immobilized with Gold Nanoparticles for Dual-Polarity SALDI MS Detection and Imaging. ACS Appl. Mater. Interface 2020, 12, 42567–42575. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Oradu, S.; Ifa, D.R.; Cooks, R.G.; Kräutler, B. Direct Plant Tissue Analysis and Imprint Imaging by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2011, 83, 5754–5761. [Google Scholar] [CrossRef]
- Hemalatha, R.G.; Pradeep, T. Understanding the Molecular Signatures in Leaves and Flowers by Desorption Electrospray Ionization Mass Spectrometry (DESI MS) Imaging. J. Agric. Food Chem. 2013, 61, 7477–7487. [Google Scholar] [CrossRef]
- Granborg, J.R.; Handler, A.H.; Janfelt, C. Mass spectrometry imaging in drug distribution and drug metabolism studies—Principles, applications and perspectives. TrAC Trends Anal. Chem. 2022, 146, 116482. [Google Scholar] [CrossRef]
- Dai, W.; Hu, Z.; Xie, D.; Tan, J.; Lin, Z. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis). Food Chem. 2020, 311, 126007. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.; Liu, Y.; He, H.; Han, M.; Li, Y.; Zeng, M.; Wang, X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem. Anal. 2018, 29, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Cooks, R.G.; Ouyang, Z.; Takats, Z.; Wiseman, J.M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Takáts, Z.; Wiseman, J.M.; Cooks, R.G. Ambient mass spectrometry using desorption electrospray ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 2005, 40, 1261–1275. [Google Scholar]
- Shiea, J.; Huang, M.Z.; Hsu, H.J.; Lee, C.Y.; Yuan, C.H.; Beech, I.; Sunner, J. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 2005, 19, 3701–3704. [Google Scholar] [CrossRef]
- Cody, R.B.; Laramee, J.A.; Durst, H.D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- McEwen, C.N.; McKay, R.G.; Larsen, B.S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826–7831. [Google Scholar] [CrossRef] [PubMed]
- Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.W.; Cooks, R.G. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionizationmass spectrometry. Chem. Commun. 2005, 15, 1950–1952. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.B.; Faria, M.; Souza, D.A.; Bloch, C., Jr.; Silva, L.P.; Humber, R.A. MALDI-TOF mass spectrometry ap-plied to identifying species of insect-pathogenic fungi from Metarhizium anisopliae complex. Mycologia 2014, 106, 865–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustini, B.; Silva, L.P.; Bloch, C. Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database. Appl. Microbiol. Biotechnol. 2014, 98, 5645–5654. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, A.; Arcangeletti, M.C.; Rodighiero, I.; Buttrini, M.; Gorrini, C.; Motta, F.; Germini, D.; Medici, M.C.; Chezzi, C.; De Conto, F. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 2014, 4, 6803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Kliks, M.M.; Qu, W.; Jun, S.; Shi, G.; Li, Q.X. Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI-TOF MS. J. Agric. Food Chem. 2009, 57, 10081–10088. [Google Scholar] [CrossRef] [PubMed]
- Bonatto, C.C.; Silva, L.P. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry. J. Sci. Food Agric. 2015, 95, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Enfissi, E.M.A.; Goodfellow, M.; Eguchi, T.; Bramley, P.M. Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant. J. 2007, 49, 552–564. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, Y.; Wang, H.; Chen, G. Qualitative and quantitative analysis of quaternary ammonium alkaloids from Rhizoma Corydalis by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry coupled with a selective precipitation reaction using Reinecke salt. Anal. Chim. Acta 2006, 555, 269–277. [Google Scholar] [CrossRef]
- Abell, D.C.; Sporns, P. Rapid quantitation of potato glycoalkaloids by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry. J. Agric. Food Chem. 1996, 44, 2292–2296. [Google Scholar] [CrossRef]
- Shrivas, K.; Patel, D.K. Quantitative determination of nicotinic acid in micro liter volume of urine sample by drop-to-drop solvent microextraction coupled to matrix assisted laser desorption/ionization mass spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 253–257. [Google Scholar] [CrossRef]
- Wang, J.; Kalt, W.; Sporns, P. Comparison between HPLC and MALDI-TOF MS analysis of anthocyanins in highbush Blueberries. J. Agric. Food Chem. 2000, 48, 3330–3335. [Google Scholar] [CrossRef]
- Wang, J.; Sporns, P. Analysis of anthocyanins in red wine and fruit juice using MALDI-MS. J. Agric. Food Chem. 1999, 47, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Marczak, Ł.; Kachlicki, P.; Koźniewski, P.; Skirycz, A.; Krajewski, P.; Stobiecki, M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry monitoring of anthocyanins in extracts from Arabidopsis thaliana leaves. Rapid Commun. Mass Spectrom. 2008, 22, 3949–3956. [Google Scholar] [CrossRef] [PubMed]
- Frison-Norrie, S.; Sporns, P. Identification and Quantification of Flavonol Glycosides in Almond Seedcoats Using MALDI-TOF MS. J. Agric. Food Chem. 2002, 50, 2782–2787. [Google Scholar] [CrossRef] [PubMed]
- Champy, P.; Melot, A.; Guérineau, V.; Gleye, C.; Höglinger, G.U.; Ruberg, M.; Lannuzel, A.; Laprévote, O.; Laurens, A.; Hocquemiller, R. Quantification of acetogenins in Annona muricata linked to atypical parkinsonism in Guadeloupe. Mov. Disord. 2005, 20, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Sleno, L.; Volmer, D.A. Toxin screening in phytoplankton: Detection and quantitation using MALDI triple quadrupole mass spectrometry. Anal. Chem. 2005, 77, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- May, L.A.; Tourkina, E.; Hoffman, S.R.; Dix, T.A. Detection and quantitation of curcumin in mouse lung cell cultures by matrix-assisted laser desorption ionization time of flight mass spectrometry. Anal. Biochem. 2005, 337, 62–69. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Simultaneous quantitation of naturally occurring insecticides, acaricides, and piscicides in rapeseed oil by UV-MALDI mass spectrometry. J. Food Meas. Charact. 2014, 8, 15–28. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, Z.Y. Tea and cancer. J. Natl. Cancer Inst. 1993, 85, 1038–1049. [Google Scholar] [CrossRef]
- Okuda, T.; Kimura, Y.; Yoshida, T.; Hatano, T.; Okuda, H.; Arichi, S. Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chem. Pharm. Bull. 1983, 31, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, K.; Fukuyo, M.; Hara, Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 1986, 32, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, N.; Ishigaki, F.; Ishigaki, A.; Iwashima, H.; Hara, Y. Reduction of blood glucose levels by tea catechin. Biosci. Biotechnol. Biochem. 1993, 57, 525–527. [Google Scholar] [CrossRef]
- Murase, T.; Nagasawa, A.; Suzuki, J.; Hase, T.; Tokimitsu, I. Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1459–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Komine, Y.; Soga, S.; Meguro, S.; Hase, T.; Tanaka, Y.; Tokimitsu, I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005, 81, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuchi, Y.; Hiramitsu, M.; Okada, M.; Hayashi, S.; Nabeno, Y.; Osawa, T.; Naito, M. Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in beta-Oxidation in Mouse White Adipose Tissue. J. Clin. Biochem. Nutr. 2008, 43, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.M.; Cao, S.Y.; Wei, X.L.; Gan, R.Y.; Wang, Y.F.; Cai, S.X.; Xu, X.Y.; Zhang, P.Z.; Li, H.B. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants 2019, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Mendilaharsu, M.; de Stefani, E.; Deneo-Pellegrini, H.; Carzoglio, J.C.; Ronco, A. Consumption of tea and coffee and the risk of lung cancer in cigarette-smoking men: A case–control study in Uruguay. Lung Cancer 1998, 19, 101–107. [Google Scholar] [CrossRef]
- Wang, M.; Guo, C.; Li, M. A case-control study on the dietary risk factors of upper digestive tract cancer. Zhonghua Yixeuehui Zazhishe 1999, 20, 95–97. [Google Scholar]
- Wu, A.H.; Tseng, C.C.; Van Den Berg, D.; Yu, M.C. Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res. 2003, 63, 7526–7529. [Google Scholar] [PubMed]
- Yang, Y.C.; Lu, F.H.; Wu, J.S.; Wu, C.H.; Chang, C.J. The protective effect of habitual tea consumption on hypertension. Arch. Intern. Med. 2004, 164, 1534–1540. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.J.; Judd, J.T.; Baer, D.J.; Clevidence, B.A.; Paul, D.R.; Edwards, A.J.; Wiseman, S.A.; Muesing, R.A.; Chen, S.C. Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J. Nutr. 2003, 133, 3298S–3302S. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Miller, J.M.T. Anti-cariogenic properties of tea (Camellia sinensis). J. Med. Microbiol. 2001, 50, 299–302. [Google Scholar] [CrossRef]
- Klaus, S.; Pültz, S.; Thöne-Reineke, C.; Wolfram, S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obes. 2005, 29, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, P.V.A.; Sabitha, K.E.; Srinivasan, P.; Shyamaladevi, C.S. Green tea attenuates diabetes induced Maillard-type fluorescence and collagen cross-linking in the heart of streptozotocin diabetic rats. Pharmacol. Res. 2007, 55, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sharangi, A.B. Medicinal and Therapeutic Potentialities of Tea (Camellia sinensis L.)—A Review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Machova Urdzikova, L.; Ruzicka, J.; Karova, K.; Kloudova, A.; Svobodova, B.; Amin, A.; Dubisova, J.; Schmidt, M.; Kubinova, S.; Jhanwar-Uniyal, M.; et al. A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology 2017, 126, 213–223. [Google Scholar] [CrossRef]
- Renno, W.M.; Al-Khaledi, G.; Mousa, A.; Karam, S.M.; Abul, H.; Asfar, S. (−)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2014, 77, 100–119. [Google Scholar] [CrossRef]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol. 2013, 168, 1059–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakanaka, S.; Juneja, L.R.; Taniguchi, M. Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng. 2000, 90, 81–85. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, Y.N.; Youn, H.N.; Lee, D.H.; Kwak, J.H.; Seong, B.L.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Song, C.S. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult. Sci. 2012, 91, 66–73. [Google Scholar] [CrossRef]
- Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005, 68, 66–74. [Google Scholar] [CrossRef]
- Lodhia, P.; Yaegaki, K.; Khakbaznejad, A.; Imai, T.; Sato, T.; Tanaka, T.; Murata, T.; Kamoda, T. Effect of green tea on volatile sulfur compounds in mouth air. J. Nutr. Sci. Vitaminol. 2008, 54, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, M.P.; Bedran, T.B.; Fournier-Larente, J.; Haas, B.; Azelmat, J.; Grenier, D. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei. BMC Complement. Altern. Med. 2015, 15, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Molecules 2018, 23, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokorny, J. Natural antioxidants for food use. Trends Food Sci. Technol. 1991, 2, 223–227. [Google Scholar] [CrossRef]
- Hara, Y. Green Tea: Health Benefits and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Weisburger, J.H.; Veliath, E.; Larios, E.; Pittman, B.; Zang, E.; Hara, Y. Tea polyphenols inhibit the formation of mutagens during the cooking of meat. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2002, 516, 19–22. [Google Scholar] [CrossRef]
- Bozkurt, H. Utilization of natural antioxidants: Green tea extract and thymbra spicata oil in Turkish dry-fermented sausage. Meat Sci. 2006, 73, 442–450. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. Tea flavonoids: Their functions, utilisation and analysis. Trends Food Sci. Technol. 2000, 11, 152–160. [Google Scholar] [CrossRef]
- Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci. 2011, 12, 5592–5603. [Google Scholar] [CrossRef] [Green Version]
- Yazdy, M.M.; Tinker, S.C.; Mitchell, A.A.; Demmer, L.A.; Werler, M.M. Maternal tea consumption during early pregnancy and the risk of spina bifida. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Merhav, H.; Amitai, Y.; Palti, H.; Godfrey, S. Tea drinking and microcytic anemia in infants. Am. J. Clin. Nutr. 1985, 41, 1210–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albassam, A.A.; Markowitz, J.S. An Appraisal of Drug-Drug Interactions with Green Tea (Camellia sinensis). Planta Med. 2017, 83, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Xu, C.; Hu, R.; Jain, M.R.; Nair, S.; Lin, W.; Yang, C.S.; Chan, J.Y.; Kong, A.N. Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Pharm. Res. 2005, 22, 1805–1820. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, G.; Di, S.A.; Vitalone, A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015, 89, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lee, M.J.; Li, H.; Yang, C.S. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metab. Dispos. 1997, 25, 1045–1050. [Google Scholar]
- Feng, W.Y. Metabolism of green tea catechins: An overview. Curr. Drug Metab. 2006, 7, 755–809. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Sagesaka, Y.M.; Kakuda, T. Analysis of tea catechins in human plasma by high-performance liquid chromatography with solid-phase extraction. J. Agric. Food Chem. 2005, 53, 9885–9889. [Google Scholar] [CrossRef]
- Oh, C.J.; Yang, E.S.; Shin, S.W.; Choi, S.H.; Park, C.I.; Yang, C.H.; Park, J.-W. Epigallocatechin gallate, a constituent of green tea, regulates high glucose-induced apoptosis. Arch. Pharm. Res. 2008, 31, 34–40. [Google Scholar] [CrossRef]
- Kim, S.J.; Li, M.; Jeong, C.W.; Bae, H.B.; Kwak, S.H.; Lee, S.H.; Lee, H.J.; Heo, B.H.; Yook, K.B.; Yoo, K.Y. Epigallocatechin-3-gallate, a green tea catechin, protects the heart against regional ischemia–reperfusion injuries through activation of risk survival pathways in rats. Arch. Pharm. Res. 2014, 37, 1079–1085. [Google Scholar] [CrossRef]
- Secretan, P.-H.; Thirion, O.; Sadou Yayé, H.; Damy, T.; Astier, A.; Paul, M.; Do, B. Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations. Pharmaceuticals 2021, 14, 1242. [Google Scholar] [CrossRef]
- Lee, L.-S.; Kim, S.-H.; Kim, Y.-B.; Kim, Y.-C. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 2014, 19, 9173–9186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avadhani, K.S.; Amirthalingam, M.; Reddy, M.S.; Udupa, N.; Mutalik, S. Development and Validation of RP-HPLC Method for Estimation of Epigallocatechin −3-gallate (EGCG) in Lipid based Nanoformulations. Res. J. Pharm. Technol. 2016, 9, 725–730. [Google Scholar] [CrossRef]
- He, Q.; Yao, K.; Jia, D.; Fan, H.; Liao, X.; Shi, B. Determination of total catechins in tea extracts by HPLC and spectrophotometry. Nat. Prod. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef]
- Hirun, S.; Roach, P.D. An improved solvent extraction method for the analysis of catechins and caffeine in green tea. J. Food Nutr. Res. 2011, 50, 160–166. [Google Scholar]
- Fernando, C.D.; Soysa, P. Simple isocratic method for simultaneous determination of caffeine and catechins in tea products by HPLC. Springerplus 2016, 5, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.B.; Zhang, D.; Li, B.; Wu, Y.Y.; Tu, Y.Y. A Rapid UPLC Method for Simul-taneous Analysis of Caffeine and 13 Index Polyphenols in Black Tea. J. Chromatogr. Sci. 2017, 55, 495–496. [Google Scholar] [CrossRef]
- El-Kayal, M.O.; Sayed, M.N.; Mortada, N.D.; Elkheshen, S. Development and vali-dation of a simple and rapid UPLC method for the in-vitro estimation of (-)-epigallocatechin-3-gallate in lipid-based formulations. Eur. J. Med. Chem. 2018, 9, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Kim, T.E.; Shin, K.H. Quantitative Analysis of Four Catechins from Green Tea Extract in Human Plasma Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Pharmacokinetic Studies. Molecules 2018, 23, 984. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, P.; Lin, L.; Harnly, J.M.; Yu, L.L.; Li, Z. Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 2011, 126, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Pongsuwan, W.; Bamba, T.; Harada, K.; Yonetani, T.; Kobayashi, A.; Fukusaki, E. High-Throughput Technique for Comprehensive Analysis of Japanese Green Tea Quality Assessment Using Ultra-Performance Liquid Chromatography with Time-of-Flight Mass Spectrometry (UPLC/TOF MS). J. Agric. Food Chem. 2008, 56, 10705–10708. [Google Scholar] [CrossRef]
- Ninomiya, M.; Unten, L.; Kim, M.; Yamamoto, T.; Juneja, L.R.; Chu, D.C.; Kim, M. (Eds.) Chemistry and Applications of Green Tea; CRC Press: Boca Raton, FL, USA, 1997; pp. 23–36. [Google Scholar]
- Sharma, V.; Gulati, A.; Ravindranath, S.D. Extractability of tea catechins as a function of manufacture procedure and temperature of infusion. Food Chem. 2005, 93, 141–148. [Google Scholar] [CrossRef]
- Wong, C.C.; Cheng, K.; Chao, J.; Peng, X.; Zheng, Z.; Wu, J.; Chen, F.; Wang, M.; Ho, C.-T.; Lin, J.-K.; et al. (Eds.) Tea and Tea Products: Chemistry and Health-Promoting Properties; CRC Press: Boca Raton, FL, USA, 2009; pp. 77–110. [Google Scholar]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Gacía-Viguera, C.; Tomás-Barberán, F.A.; Santos-Buelga, C.; Williamson, G. (Eds.) Methods in Polyphenol Analysis; RSC: Cambridge, UK, 2003; pp. 92–127. [Google Scholar]
- Ramakrishna, U.V.; Sunder, R.S.; Kumar, K.R.; Sinha, S.N. Method development and validation for rapid identification of epigallocatechin gallate using ultra-high performance liquid chromatography. PLoS ONE 2020, 15, e0227569. [Google Scholar]
- Saito, S.; Welzel, A.; Suyenaga, E.; Bueno, F. A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC. Food Sci. Technol. 2006, 26, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.; Lee, M.-J.; Lu, H.; Meng, X.; Ju, J.; Seril, D.; Sturgill, M.; Yang, C. Epigallocatechin-3-Gallate Is Absorbed but Extensively Glucuronidated Following Oral Administration to Mice. J. Nutr. 2003, 133, 4172–4177. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, M.J.; Hong, J.; Li, C.; Smith, T.J.; Yang, G.Y.; Seril, D.N.; Yang, C.S. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr. Cancer 2000, 37, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wangkarn, S.; Grudpan, K.; Khanongnuch, C.; Pattananandecha, T.; Apichai, S.; Saenjum, C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules 2021, 26, 6052. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Wang, X.Y.; Li, H.; Chen, L.; Sun, Y.; Gobbo, S.; Balentine, D.A.; Yang, C.S. Analysis of Plasma and Urinary tea Polyphenols in Human Subjects. Cancer Epidemiol. Biomark. Prev. 1995, 4, 393–399. [Google Scholar] [PubMed]
- Nakagawa, K.; Miyazawa, T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, ()-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal. Biochem. 1997, 248, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, Y.; Li, R.C. Pharmacokinetics and system linearity of tea catechins in rat. Xenobiotica 2001, 31, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Matsui, Y.; Shimizu, N.; Kondou, N.; Endou, H.; Kuzukawa, M.; Hase, T. Determination of green tea catechins in human plasma using liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B 2006, 834, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Mata-Bilbao Mde, L.; Andres-Lacueva, C.; Roura, E.; Jauregui, O.; Escribano, E.; Torre, C.; Lamuela-Raventos, R.M. Absorption and pharmacokinetics of green tea catechins in beagles. Br. J. Nutr. 2008, 100, 496–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.-H.; Wang, W.-B.; Li, J.; Chang, Y.-X.; Wang, Y.-F.; Zhang, J.; Zhang, B.-L.; Gao, X.-M. Simultaneous determination of catechin, epicatechin and epicatechin gallate in rat plasma by LC–ESI-MS/MS for pharmacokinetic studies after oral admin-istration of Cynomorium songaricum extract. J. Chromatogr. B 2012, 880, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Van Amelsvoort, J.M.; van het Hof, K.H.; Mathot, J.N.J.J.; Mulder, T.P.J.; Wiersma, A.; Tijnerg, L.B.M. Plasma concen-trations of individual tea catechins after a single oral dose in humans. Xenobiotica 2001, 31, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Serafini, M.; Salucci, M.; Azzini, E.; Ferreo-Luzzi, A. Application of a new high-performance liquid chromato-graphic method for measuring selected polyphenols in human plasma. J. Chromatogr. B 1997, 692, 311–317. [Google Scholar] [CrossRef]
- Pietta, P.; Simonetti, P.; Gardana, C.; Brusamolino, A.; Morazoni, P.; Bombardelli, E. Cate-chin metabolites after intake of green tea infusions. Biochem. Mol. Biol. Int. 1998, 46, 895–903. [Google Scholar] [PubMed] [Green Version]
- Lee, M.J.; Prabhu, S.; Meng, X.; Li, C.; Yang, C.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Anal. Biochem. 2000, 279, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Kotani, A.; Miyashita, N.; Kusu, F. Determination of catechins in human plasma after commercial canned green tea ingestion by high-performance liquid chromatography with electrochemical detection using a microbore column. J. Chromatogr. B 2003, 788, 269–275. [Google Scholar] [CrossRef]
- Umegaki, K.; Sugisawa, A.; Yamada, K.; Higuchi, M. Analytical method of measuring tea catechins in human plasma by solidphase extraction and HPLC with electrochemical de-tection. J. Nutr. Sci. Vitaminol. 2001, 47, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roura, E.; Andres-Lacueva, C.; Jauregui, O.; Badia, E.; Estruch, R.; Izquierdo-Pulido, M.; Lamuela-Raventos, R.M. Rapid liquid chromatography tandem mass spectrometry assay to quantify plasma (-)-epicatechin metabolites after ingestion of a standard portion of co-coa beverage in humans. J. Agric. Food Chem. 2005, 53, 6190–6194. [Google Scholar] [CrossRef]
- Murphy, A.T.; Bonate, P.L.; Kasper, S.C.; Gillespie, T.A.; Delong, A.F. Determination of xanomeline in human plasma by ionspray tandem mass-spectrometry. Mass Spectrom. 1994, 23, 621–625. [Google Scholar] [CrossRef]
- Mata, M.L.; Lacueva, C.A.; Roura, E.; Jáuregui, O.; Escribano, E.; Torre, C.; Lamuela-Raventós, R.M. Absorption and phar-macokinetics of grapefruit flavanones in beagles. Br. J. Nutr. 2007, 98, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urpí-Sardà, M.; Jáuregui, O.; Lamuela-Raventós, R.M.; Jaeger, W.; Miksits, M.; Covas, M.I.; Andrés-Lacueva, C. Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Anal. Chem. 2005, 77, 3149–3155. [Google Scholar] [CrossRef]
- Lin, L.C.; Wang, M.N.; Tseng, T.Y.; Sung, J.S.; Tsai, T.H. Pharmacokinetics of (−)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J. Agric. Food. Chem. 2007, 55, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Plumb, R.; Castro-Perez, J.; Granger, J.; Beattie, I.; Joncour, K.; Wright, A. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Guillarme, D.; Casetta, C.; Bicchi, C.; Veuthey, J.-L. High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors. J. Chromatogr. A 2010, 1217, 6882–6890. [Google Scholar] [CrossRef] [PubMed]
- Misaka, S.; Kawabe, K.; Onoue, S.; Werba, J.P.; Giroli, M.; Kimura, J.; Watanabe, H.; Yamada, S. Development of rapid and simultaneous quantitative method for green tea catechins on the bioanalytical study using UPLC/ESI-MS. Biomed. Chromatogr. 2013, 27, 1–6. [Google Scholar] [CrossRef]
- De Lourdes Mata-Bilbao, M.; Andrés-Lacueva, C.; Roura, E.; Jáuregui, O.; Torre, C.; Lamuela-Raventós, R.M. A new LC/MS/MS rapid and sensitive method for the determination of green tea catechins and their metabolites in biological samples. J. Agric. Food Chem. 2007, 55, 8857–8863. [Google Scholar] [CrossRef]
- Miketova, P.; Schram, K.H.; Whitney, J.; Li, M.; Huang, R.; Kerns, E.; Valcic, S.; Timmermann, B.N.; Rourick, R.; Klohr, S. Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea. J. Mass Spectrom. 2000, 35, 860–869. [Google Scholar] [CrossRef]
- Liquid Chromatography/Mass Spectrometry, Application Note? LC/MS Applications Team PerkinElmer, Inc.: Waltham, MA, USA. Available online: https://www.perkinelmer.com/category/liquid-chromatography-mass-spectrometry-lc-ms (accessed on 2 July 2022).
- Juang, Y.M.; Chien, H.J.; Chen, C.J.; Lai, C.C. Graphene flakes enhance the detection of TiO2-enriched catechins by SALDI-MS after microwave-assisted enrichment. Talanta 2016, 153, 347–352. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Shimizu, N. Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction. Food Chem. X 2022, 13, 100200. [Google Scholar] [CrossRef] [PubMed]
- Wasai, M.; Fujimura, Y.; Nonaka, H.; Kitamura, R.; Murata, M.; Tachibana, H. Postprandial glycaemia-lowering effect of a green tea cultivar Sunrouge and cultivar-specific metabolic profiling for determining bioactivity-related ingredients. Sci. Rep. 2018, 8, 16041. [Google Scholar] [CrossRef]
- Fujimura, Y.; Watanabe, M.; Mori-kawa-Ichinose, T.; Fujino, K.; Yamamo-to, M.; Nishioka, S.; Inoue, C.; Ogawa, F.; Yonekura, M.; Nakasone, A.; et al. Metabolic Profiling for Evaluating the Dipeptidyl Peptidase-IV Inhibitory Po-tency of Diverse Green Tea Cultivars and Determining Bioactivity-Related Ingredients and Combinations. J. Agric. Food Chem. 2022, 70, 6455–6466. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Meng, N.; Li, Y.; Chen, S.-W. Efficient enzymatic modification of epi-gallocatechin gallate in ionic liquids. Green Chem. Lett. Rev. 2021, 14, 415–424. [Google Scholar] [CrossRef]
- Song, Y.; Sun, H.J.; Xiao, J.; Wang, F.; Ding, Y.; Zhao, J.Y.; Wen, A.D. Development of a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of epigallocate-chin-3-gallate, silibinin, and curcumin in plasma and different tissues after oral dosing of Protandim in rats and its ap-plication in pharmacokinetic and tissue distribution studies. J. Pharmaceut. Biomed. 2019, 170, 54–62. [Google Scholar]
- Susanti, E.; Ratnawati, R.; Rudijanto, A. Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pac. J. Trop. Biomed. 2015, 5, 1046–1050. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Z.; Wen, M.; Ho, C.T.; Jiang, Z.; Wang, Y.; Xu, N.; Xie, Z.; Zhang, J.; Zhang, L.; et al. Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. Food Sci. Hum. Wellness 2022, 11, 627–634. [Google Scholar] [CrossRef]
- Farag, M.A.; Shakour, Z.T.A.; Elmassry, M.M.; Donia, M.S. Metabolites profiling reveals gut microbiome-mediated bio-transformation of green tea polyphenols in the presence of N-nitrosamine as pro-oxidant. Food Chem. 2022, 371, 131147. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Yuan, Z.; Guo, G. Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations. Food Chem. 2021, 352, 129359. [Google Scholar] [CrossRef]
- Wang, B.; Qu, F.; Wang, P.; Zhao, L.; Wang, Z.; Han, Y.; Zhang, X. Characterization analysis of flavor compounds in green teas at different drying temper-ature. LWT 2022, 161, 113394. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Yi, L.; Hoegger, P.; Arroo, R.; Bajpai, V.K.; Prieto, M.-A.; Simal-Gandara, J.; Wang, S.; Cao, H. Stability and antioxidant capacity of epigallocatechin gallate in Dulbecco’s modified eagle medium. Food Chem. 2022, 366, 130521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, J.; Xu, Y.; Wang, H.; Lu, L.; Song, R.; Zou, J. Epigallocate-chin-3-gallate inhibits replication of white spot syndrome virus in the freshwater crayfish Procambarus clarkii. J. Fish Dis. 2022, 45, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Cui, Y.; Granato, D.; Wen, M.; Han, Z.; Zhang, L. Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing. Food Res. Int. 2022, 155, 111041. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Zhang, Q.; Li, Q.; Geng, B.; Bi, K. Development of a UFLC-MS/MS method for the simultaneous determination of seven tea catechins in rat plasma and its application to a pharmacokinetic study after administration of green tea extract. J. Pharm. Biomed. Anal. 2016, 125, 229–235. [Google Scholar] [CrossRef]
- Jing, J.; Shi, Y.Z.; Zhang, Q.F.; Wang, J.; Ruan, J.Y. Prediction of Chinese green tea ranking by metabolite profiling using ul-tra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Food Chem. 2017, 221, 311–316. [Google Scholar] [CrossRef]
- Tu, L.J.; Sun, H.J.; He, S.D.; Zhu, Y.S.; Yu, M.; Sun, X.B.; Zhang, Z.Y. Isolation of Epigallocatechin Gallate from Green Tea and its Effects on Probiotics and Pathogenic Bacteria. Curr. Top. Nutraceutical Res. 2019, 17, 69–77. [Google Scholar]
- Del Rio, D.; Calani, L.; Cordero, C.; Salvatore, S.; Pellegrini, N.; Brighenti, F. Bioavailability and catabolism of green tea fla-van-3-ols in humans. Nutrition 2010, 26, 1110–1116. [Google Scholar] [CrossRef]
- Tao, W.; Zhou, Z.; Zhao, B.; Wei, T. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC–MS–MS method. J. Pharm. Biomed. Anal. 2016, 131, 140–145. [Google Scholar] [CrossRef]
- Guo, P.-C.; Shen, H.-D.; Fang, J.-J.; Ding, T.-M.; Ding, X.-P.; Liu, J.-F. On-line high-performance liquid chromatography coupled with biochemical detection method for screening of α-glucosidase inhibitors in green tea. Biomed. Chromatogr. 2018, 32, e4281. [Google Scholar] [CrossRef]
- Ong, C.; Annuar, M.S.M. Polyphenolic composition and in vitro antioxidant activities of native- and tannase-treated green tea extracts. Int. J. Food Sci. Technol. 2017, 52, 748–756. [Google Scholar] [CrossRef]
- Liu, Z.; de Bruijn, W.J.C.; Bruins, M.E.; Vincken, J.P. Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota In vitro. J. Agric. Food Chem. 2020, 68, 9804–9815. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Fu, Y.-Q.; Chen, J.-X.; Wang, F.; Feng, Z.-H.; Yin, J.-F.; Zeng, L.; Xu, Y.-Q. Effects of baking treatment on the sensory quality and physicochemical properties of green tea with different processing methods. Food Chem. 2022, 380, 132217. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.; Lane, G.A.; Otter, D.E.; Hemar, Y.; Quek, S.-Y.; Harrison, S.J.; Rasmussen, S. Analysis of metabolic markers of tea origin by UHPLC and high-resolution mass spectrometry. Food Res. Int. 2013, 53, 827–835. [Google Scholar] [CrossRef]
- Ge, J.; Tan, B.-X.; Chen, Y.; Yang, L.; Peng, X.-C.; Li, H.-Z.; Lin, H.-J.; Zhao, Y.; Wei, M.; Cheng, K.; et al. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: Potential risk of diminished sunitinib bioavailability. J. Mol. Med.-Jmm. 2011, 89, 595–602. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, Y.; Zhang, H.; Zhong, L.; Qian, X. Systematic characterization of the covalent interactions between (−)-epigallocatechin gallate and peptides under physiological conditions by mass spectrometry. Rapid. Commun. Mass Spectrom. 2009, 23, 1147–1157. [Google Scholar] [CrossRef]
- Bae, M.J.; Ishii, T.; Minoda, K.; Kawada, Y.; Ichikawa, T.; Mori, T.; Kamihira, M.; Nakayama, T. Albumin stabilizes (−)-epigallocatechin gallate in human serum: Binding capacity and antioxidant property. Mol. Nutr. Food Res. 2009, 53, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Mori, T.; Tanaka, T.; Mizuno, D.; Yamaji, R.; Kumazawa, S.; Nakayama, T.; Akagawa, M. Covalent modification of pro-teins by green tea polyphenol epigallocatechin-3-gallate through autoxidation. Free Radic. Biol. Med. 2008, 45, 1384–1394. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Tanaka, M.; Li, B.; Ueno, T.; Matsuda, H.; Matsui, T. Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging. Sci. Rep. 2019, 9, 3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Fujimura, Y.; Hagihara, T.; Sasaki, M.; Yukihira, D.; Nagao, T.; Miura, D.; Yamaguchi, S.; Saito, K.; Tanaka, H.; et al. In situ label-free imaging for visualizing the biotransformation of a bioactive polyphenol. Sci. Rep. 2013, 3, 2805. [Google Scholar] [CrossRef] [PubMed]
- Rush, M.D.; Rue, E.A.; Wong, A.; Kowalski, P.; Glinski, J.A.; van Breemen, R.B. Rapid Determination of Procyanidins Using MALDI-ToF/ToF Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11355–11361. [Google Scholar] [CrossRef]
- Ohnishi-Kameyama, M.; Yanagida, A.; Kanda, T.; Nagata, T. Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 31–36. [Google Scholar] [CrossRef]
- Go, E.P.; Apon, J.V.; Luo, G.; Saghatelian, A.; Daniels, R.H.; Sahi, V.; Dubrow, R.; Cravatt, B.F.; Vertes, A.; Siuzdak, G. Desorption/ionization on silicon nanowires. Anal. Chem. 2005, 77, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.-J.; Shin, J.-H.; Song, J.-Y.; Han, S.-Y. Effects of ZnO nanowire length on surface-assisted laser desorption/ionization of small molecules. J. Am. Soc. Mass Spectrom. 2010, 21, 989. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.N.; Razunguzwa, T.; Powell, M.; Knochenmuss, R.; Vertes, A. Nanophotonic ion production from silicon microcolumn arrays. Angew. Chem. Int. Ed. Engl. 2009, 48, 1669–1672. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Li, J.; Chi, L.; Guo, X.; Lu, N. Biomimetic antireflective siliconnanocones array for small molecules analysis. J. Am. Soc. Mass Spectrom. 2013, 24, 66. [Google Scholar] [CrossRef]
- Gulbakan, B.; Park, D.; Kang, M.; Kececi, K.; Martin, C.R.; Powell, D.H.; Tan, W. Laser desorption ionization mass spectrometry on silicon nanowell arrays. Anal. Chem. 2010, 82, 7566–7575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tata, A.; Fernandes, A.M.A.P.; Santos, V.G.; Alberici, R.M.; Araldi, D.; Parada, C.A.; Braguini, W.; Veronez, L.; Bisson, G.S.; Reis, F.H.Z.; et al. Nanoassisted laser desorption-ionization-MS imaging oftumors. Anal. Chem. 2012, 84, 6341–6345. [Google Scholar] [CrossRef]
- Wyatt, M.F.; Ding, S.; Stein, B.K.; Brenton, A.G.; Daniels, R.H. Analysis of variousorganic and organometallic compounds using nanostructure-assisted laserdesorption/ionization time-of-flight mass spectrometry (NALDI-TOFMS). J. Am. Soc. Mass Spectrom. 2010, 21, 1256. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Thomas, J.; Averbuj, C.; Broo, K.; Engelhard, M.; Crowell, J.; Finn, M.; Siuzdak, G. Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 2001, 73, 612–619. [Google Scholar] [CrossRef]
- Wei, J.; Buriak, J.M.; Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246. [Google Scholar] [CrossRef]
- Northen, T.R.; Yanes, O.; Northen, M.T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S.L.; Nordström, A.; Siuzdak, G. Clathrate nanostructures for mass spectrometry. Nature 2007, 449, 1033–1036. [Google Scholar] [CrossRef]
- Stolee, J.A.; Walker, B.N.; Chen, Y.; Vertes, A. Nanophotonic Ion Sources. AIP Conf. Proc. 2010, 1278, 98–110. [Google Scholar]
- Her, T.H.; Finlay, R.J.; Wu, C.; Mazur, E. Femtosecond laser-induced formation of spikes on silicon. Appl. Phys. A Mater. Sci. Process. 2000, 70, 383–385. [Google Scholar] [CrossRef]
- Walker, B.N.; Stolee, J.A.; Vertes, A. Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal. Chem. 2012, 84, 7756–7762. [Google Scholar] [CrossRef] [PubMed]
- Stopka, S.A.; Rong, C.; Korte, A.R.; Yadavilli, S.; Nazarian, J.; Razunguzwa, T.T.; Morris, N.J.; Vertes, A. Molecular imaging of Biological Samples on Nanophotonic LaserDesorption Ionization Platforms. Angew. Chem. Int. Ed. Engl. 2016, 55, 4369–4612. [Google Scholar] [CrossRef]
Green Tea Components | Concentrations | References |
---|---|---|
Epigallocatechin gallate (EGCG) | 38.7–64.5 | [13,14,15] |
Epicatechin gallate (ECG) | 1.8–37.9 | |
Epigallocatechin (EGC) | 2.2–38.8 | |
Gallocatechin gallate (GCG) | 0.5–4.6 | |
Gallocatechin (GC) | 0–9.8 | |
Gallic acid (GA) | 0.3–1.7 | |
Catechin | 0–3.8 | |
Epicatechin (EC) | 3.9–9.8 |
MS Technique | Source of EGCG | References |
---|---|---|
a. MS-coupled chromatographic methods | ||
LC-MS | Tea samples | [142] |
LC-MS | Tea samples | [143] |
LC-MS | Tea samples | [144] |
LC-MS | Pure EGCG | [145] |
LC-MS/MS | Rat plasma and liver tissue | [146] |
LC-MS/MS | Tea samples | [147] |
LC-Q-TOF-MS/MS | Tea samples | [148] |
HR-LC-MS/MS | Biotransformed products of green tea extract | [149] |
UPLC-Q-TOF/MS | Tea samples | [150] |
UPLC-MS/MS | Tea samples | [151] |
UPLC-MS-MS | Pure EGCG | [152] |
UPLC-Q-TOF-MS | Crayfish liver and muscle | [153] |
UPLC-QQQ-MS/MS | Tea samples | [154] |
UFLC-MS/MS | Rat plasma | [155] |
UPLC-Q-TOF/MS | Tea samples | [156] |
HPLC-MS | Tea samples (purified EGCG) | [157] |
HPLC-MS/MS | Human plasma | [158] |
HPLC-ESI-MS/MS | Tea samples | [159] |
HPLC-FTMS | Tea samples | [160] |
UHPLC-ESI-QTOF-MS | Tea samples | [161] |
UHPLCESI-IT-MS | Human fecal materials | [162] |
UHPLC-Q Exactive-MS | Tea samples | [163] |
UHPLC-MS | Tea samples | [99] |
b. Direct MS techniques | ||
ESI-MS | EGCG-sucrose solution | [164] |
UHPLC-ESI-QTOF-MS | Tea samples | [165] |
QTOF-MS | Pure EGCG Interaction between EGCG and sunitinib | [166] |
ESI-QTOF-MS MALDI-TOF MS | Pure EGCG Interaction between EGCG and model peptides | [167] |
MALDI-TOF MS | Interaction of EGCG with albumin | [168] |
MALDI-TOF/TOF MS | Interaction between EGCG and calmodulin-dependent protein kinase II | [169] |
MALDI-MSI | Mammalian tissues | [170,171] |
SALDI-MS | Catechins | [142] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivanesan, I.; Muthu, M.; Kannan, A.; Pushparaj, S.S.C.; Oh, J.-W.; Gopal, J. Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. Separations 2022, 9, 209. https://doi.org/10.3390/separations9080209
Sivanesan I, Muthu M, Kannan A, Pushparaj SSC, Oh J-W, Gopal J. Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. Separations. 2022; 9(8):209. https://doi.org/10.3390/separations9080209
Chicago/Turabian StyleSivanesan, Iyyakkannu, Manikandan Muthu, Anusha Kannan, Suraj Shiv Charan Pushparaj, Jae-Wook Oh, and Judy Gopal. 2022. "Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry" Separations 9, no. 8: 209. https://doi.org/10.3390/separations9080209
APA StyleSivanesan, I., Muthu, M., Kannan, A., Pushparaj, S. S. C., Oh, J. -W., & Gopal, J. (2022). Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. Separations, 9(8), 209. https://doi.org/10.3390/separations9080209