Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. GC-MS Analysis
2.3. GC-FID Analysis
2.4. SFC-UV Analysis
2.5. SFC-QTOF Analysis
2.6. Final SFC Chromatographic Conditions
2.7. Calibration Curves
3. Results and Discussion
3.1. Qualitative Analysis
3.1.1. Gas Chromatography
3.1.2. Supercritical Fluid Chromatography
3.2. Quantitative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Kaskoos, R.A. Essential Oil Analysis by GC-MS and Analgesic Activity of Lippia citriodora and Citrus limon. J. Essent. Oil Bear Pl 2019, 22, 273–281. [Google Scholar] [CrossRef]
- Citrus Oil Market Size, Share & Trends Analysis Report by Product (Orange Oil, Lemon Oil), By Application (Personal Care, Food & Beverages, Aromatherapy), By Region, And Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/citrus-oil-market (accessed on 29 July 2020).
- Calabrese, F. Origin and history. In Citrus: The genus Citrus, 1st ed.; Dugo, G., Di Giacomo, A., Eds.; Taylor & Francis: London, UK, 2002; pp. 1–15. [Google Scholar]
- Composition Eau de toilette Eau des Merveilles Hermès. Available online: https://www.olfastory.com/parfum/eau-des-merveilles/composition/ (accessed on 29 July 2020).
- Composition Eau de toilette O de Lancôme Lancôme. Available online: https://www.olfastory.com/parfum/o-de-lancome/composition/ (accessed on 29 July 2020).
- Shiota, H. Volatile Components in the Peel Oil from Fingered Citron (Citrus medica L. var. sarcodactylis Swingle). Flavour Fragr. J. 1990, 5, 33–37. [Google Scholar] [CrossRef]
- Benincasa, M.; Buiarelli, F.; Cartoni, G.P.; Coccioli, F. Analysis of Lemon and Bergamot Essential Oils by HPLC with Microbore Columns. Chromatographia 1990, 30, 5–6. [Google Scholar] [CrossRef]
- Mondello, L.; Casilli, A.; Tranchida, P.Q.; Dugo, P.; Dugo, G. Comprehensive two-dimensional GC for the analysis of Citrus essential oils. Flavour Fragr. J. 2005, 20, 136–140. [Google Scholar] [CrossRef]
- Boughendjioua, H.; Djeddi, S. Fourier Transformed Infrared Spectroscopy Analysis of Constituents of Lemon Essential Oils from Algeria. Am. J. Opt. Photon. 2017, 5, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Zoccali, M.; Arigò, A.; Russo, M.; Salafia, F.; Dugo, P.; Mondello, L. Characterization of Limonoids in Citrus Essential Oils by Means of Supercritical Fluid Chromatography Tandem Mass Spectrometry. Food Anal. Methods 2018, 11, 3257–3266. [Google Scholar] [CrossRef]
- Desmortreux, C.; Rothaupt, M.; West, C.; Lesellier, E. Improved separation of furocoumarins of essential oils by supercritical fluid chromatography. J. Chromatogr. A 2009, 1216, 7088–7095. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghollasi Mood, N.; Ansarinasab, H.; Sulaiman Alsagri, A.; Mehdipourrad, M. A novel sensitivity analysis of a new integrated helium extraction process through the interaction of costs and environmental impacts. Appl. Therm. Eng. 2019, 159, 113787. [Google Scholar] [CrossRef]
- Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Supercritical CO2: A green solvent. Available online: https://www.chemengonline.com/supercritical-co2-a-green-solvent/ (accessed on 9 November 2020).
- McCann, J. Analysis of Gasoline and Other Light Distillate Fuels. In Manual on Hydrocarbon Analysis, 6th ed.; ASTM International: West Conshohocken, PA, USA, 1998; pp. 18–21. [Google Scholar]
- He, P.X.; Zhang, Y.; Zhou, Y.; Li, G.H.; Zhang, J.W.; Feng, X.S. Supercritical fluid chromatography–a technical overview and its applications in medicinal plant analysis: An update covering 2012–2018. Analyst 2019, 144, 5324–5352. [Google Scholar] [CrossRef]
- Lemasson, E.; Bertin, S.; West, C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J. Sep. Sci. 2016, 39, 212–233. [Google Scholar] [CrossRef]
- Da Silva, C.G.A.; Collins, C.H. Super/subcritical fluid chromatography with packed columns: State of the art and applications. Quim. Nova 2014, 37, 1047–1057. [Google Scholar] [CrossRef]
- Steuer, W.; Grant, I.; Erni, F. Comparison of high- performance liquid chromatography, supercritical fluid chromatography and capillary zone electrophoresis in drug analysis. J. Chromatogr. 1990, 507, 125–140. [Google Scholar] [CrossRef]
- Santerre, C.; Vallet, N.; Touboul, D. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry. J. Chromatogr. B 2018, 1092, 1–6. [Google Scholar] [CrossRef]
- Fujito, Y.; Hayakawa, Y.; Bamba, T. Development of a novel comprehensive analytical method for volatile compounds using supercritical fluid chromatography/mass spectrometry with a highly cross-linked styrene divinylbenzene polymer-based column. J. Chromatogr. A 2020, 1626, 461363. [Google Scholar] [CrossRef]
- Oil of Lemon (Citrus limon (L.) Burm. F.), Obtained by Expression, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2003.
- Cicchetti, E.; Merle, P.; Chaintreau, A. Quantitation in gas chromatography: Usual practices and performances of a response factor database. Flavour Fragr. J. 2008, 23, 450–459. [Google Scholar] [CrossRef]
- West, C.; Lesellier, E. A unified classification of stationary phases for packed column supercritical fluid chromatography. J. Chromatogr. A. 2008, 1191, 21–39. [Google Scholar] [CrossRef]
- Nagai, K.; Shibata, T.; Shinkura, S.; Ohnishi, A. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions. J. Chromatogr. A 2018, 1549, 85–92. [Google Scholar] [CrossRef]
- Zhurov, K.O.; Menin, L.; Di Franco, T.; Tsybin, Y.O. A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets. J. Am. Soc. Mass Spectrom. 2015, 26, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Imbert, L.; Gaudin, M.; Libong, D.; Touboul, D.; Abreu, S.; Loiseau, P.M.; Laprévote, O.; Chaminade, P. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani. J. Chromatogr. A 2012, 1242, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Méjean, M.; Brunelle, A.; Touboul, D. Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 5133–5142. [Google Scholar] [CrossRef]
- Hebra, T.; Eparvier, V.; Touboul, D. Atmospheric pressure photoionization versus electrospray for the dereplication of highly conjugated natural products using molecular networks. J. Chromatogr. A 2020, 1630, 461533. [Google Scholar] [CrossRef]
- Cachet, T.; Brevard, H.; Chaintreau, A.; Demyttenaere, J.; French, L.; Gassenmeier, K.; Joulain, D.; Koenig, T.; Leijs, H.; Liddle, P.; et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016, 31, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Blanch, G.P. Determination of the Enantiomeric Composition of Limonene and Limonene-1,2-epoxide in Lemon Peel by Multidimensional Gas Chromatography with Flame-lonization Detection and Selected Ion Monitoring Mass Spectrometry. J. Chromatogr. Sci. 1998, 36, 37–43. [Google Scholar] [CrossRef] [Green Version]
Retention Time (min) | Compound | Retention Index | FID Average Area% | Standard Deviation | CV% | RRF | FID Average Area% Corrected Using RRF |
---|---|---|---|---|---|---|---|
3.82 | α-Pinene | 1032 | 2.26 | 0.039 | 1.71 | 0.765 | 2.25 |
4.19 | Camphene | 1075 | ND | NA | 0.765 | 0.00 | |
4.60 | β-Pinene | 1116 | 15.59 | 0.242 | 1.55 | 0.765 | 15.51 |
4.70 | Sabinene | 1123 | ND | NA | 0.765 | 0.00 | |
5.08 | Myrcene | 1145 | 1.07 | 0.045 | 4.24 | 0.765 | 1.07 |
/ | Unidentified | Not applicable | 0.09 | 0.024 | 27.32 | 1 | 0.11 |
5.69 | Limonene | 1178 | 67.06 | 0.137 | 0.20 | 0.765 | 66.72 |
5.84 | β-phellandrene | 1209 | 0.05 | 0.005 | 10.16 | 0.765 | 0.05 |
6.34 | γ-terpinene | 1238 | 9.46 | 0.026 | 0.27 | 0.765 | 9.41 |
6.77 | p-cymene | 1261 | 0.31 | 0.007 | 2.35 | 0.698 | 0.28 |
6.94 | Terpinolene | 1276 | 0.36 | 0.004 | 1.07 | 0.765 | 0.36 |
10.50 | Citronellal | 1488 | 0.05 | 0.001 | 2.85 | 0.869 | 0.06 |
/ | Unidentified | Not applicable | 0.03 | 0.027 | 91.16 | 1 | 0.04 |
11.63 | Linalol | 1537 | 0.15 | 0.020 | 13.10 | 0.887 | 0.17 |
12.44 | α-E-bergamotene | 1584 | 0.32 | 0.038 | 12.04 | 0.751 | 0.31 |
12.81 | E-caryophyllene | 1594 | 0.20 | 0.030 | 14.93 | 0.751 | 0.200 |
14.43 | Neral | 1667 | 0.49 | 0.006 | 1.29 | 0.887 | 0.56 |
14.59 | α-terpineol | 1688 | 0.20 | 0.001 | 0.69 | 0.869 | 0.22 |
/ | Unidentified | Not applicable | 0.37 | 0.033 | 8.74 | 1 | 0.49 |
15.05 | β-bisabolene | 1714 | 0.52 | 0.056 | 10.82 | 0.751 | 0.51 |
15.33 | Geranial | 1715 | 1.06 | 0.065 | 6.09 | 0.887 | 1.23 |
/ | Unidentified | Not applicable | 0.06 | 0.003 | 5.84 | 1 | 0.08 |
15.58 | Geranyl acetate | 1711 | 0.30 | 0.007 | 2.48 | 0.957 | 0.38 |
RT (min) | Compound | Absolute Area | Retention Factor k’ |
---|---|---|---|
6.89 | α−pinene (C10H16) | 239.15 | 1.8 |
7.46 | β−pinene (C10H16) | 834.15 | 2.0 |
7.84 | sabinene (C10H16) | 500.30 | 2.1 |
10.49 | γ-terpinene (C10H16) | 1944.30 | 2.8 |
10.98 | Unidentified | 452.51 | / |
11.18 | limonene (C10H16) | 1884.73 | 3.0 |
11.41 | Unidentified | 79.89 | / |
14.66 | neral (C10H16O) | 609.48 | 4.1 |
15.48 | bisabolene (C15H24) | 24.02 | 4.4 |
15.87 | caryophyllene (C15H24) | 33.08 | 4.5 |
16.38 | geranial (C10H16O) | 1029.02 | 4.7 |
16.98 | C15H24 | 32.20 | 4.8 |
Method | Regression Line Equation | R2 | LOD (%) | LOQ (%) |
---|---|---|---|---|
GC-FID | y = 2276794x − 10504 | 0.994 | 0.029 | 0.108 |
SFC-UV | y = 329.76x − 6.65 | 0.998 | 0.020 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santerre, C.; Delannay, E.; Franco, P.; Vallet, N.; Touboul, D. Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils. Separations 2022, 9, 183. https://doi.org/10.3390/separations9070183
Santerre C, Delannay E, Franco P, Vallet N, Touboul D. Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils. Separations. 2022; 9(7):183. https://doi.org/10.3390/separations9070183
Chicago/Turabian StyleSanterre, Cyrille, Eldra Delannay, Pilar Franco, Nadine Vallet, and David Touboul. 2022. "Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils" Separations 9, no. 7: 183. https://doi.org/10.3390/separations9070183
APA StyleSanterre, C., Delannay, E., Franco, P., Vallet, N., & Touboul, D. (2022). Comparison of Supercritical Fluid Chromatography Hyphenated to an Ultraviolet Detector and Gas Chromatography Hyphenated to a Flame Ionization Detector for Qualitative and Quantitative Analysis of Citrus Essential Oils. Separations, 9(7), 183. https://doi.org/10.3390/separations9070183