n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of SAPO-34 with OTCS
2.3. SAPO-34/PDMS Mixed Matrix Membrane Preparation
2.4. Characterization of SAPO-34 and MMMs
2.5. Gas Permeation Test
3. Results and Discussion
3.1. SAPO-34 Molecular Sieve Characterization
3.2. Morphology of SAPO-34/PDMS MMMs
3.3. Separation Performance of SAPO-34 (OTCS)/PDMS MMMs
3.3.1. Effect of OTCS Modification
3.3.2. Effect of SAPO-34 (OTCS) Loading
3.3.3. Effect of Operating Pressure
3.3.4. Effect of Propane Feed Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, B.; Ho, S.S.H.; Gong, S.; Ni, J.; Li, H.; Han, L.; Yang, Y.; Qi, Y.; Zhao, D. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmos. Chem. Phys. 2019, 19, 617–638. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Liu, X.; Zhang, Y.; Shao, M.; Lu, K.; Tan, Q. Sources and abatement mechanisms of VOCs in southern china. Atmos. Environ. 2019, 201, 28–40. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, D.; Sun, J.; Wang, Y.H.; Yao, D. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Sci. Total Environ. 2019, 695, 133889. [Google Scholar] [CrossRef] [PubMed]
- Hoisington, J.; Herrington, J.S. Rapid Determination of Ethylene Oxide and 75 VOCs in Ambient Air with Canister Sampling and Associated Growth Issues. Separations 2021, 8, 35. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.Q.; Wang, P.; Yan, Y.F.; Ran, J.Y. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Muntha, S.T.; Kausar, A.; Siddiq, M. Progress in Applications of Polymer-Based Membranes in Gas Separation Technology. Polym. Plast. Technol. Eng. 2016, 55, 1282–1298. [Google Scholar] [CrossRef]
- Iyer, G.M.; Liu, L.; Zhang, C. Hydrocarbon separations by glassy polymer membranes. J. Polym. Sci. 2020, 58, 2482–2517. [Google Scholar] [CrossRef]
- Alqaheem, Y.; Alomair, A.; Alhendi, A.; Alkandari, S. Preparation of polyetherimide membrane from non-toxic solvents for the separation of hydrogen from methane. Chem. Cent. J. 2018, 12, 80. [Google Scholar] [CrossRef]
- Khan, M.Y.; Khan, A.; Adewole, J.K.; Naim, M.; Basha, S.I.; Aziz, M.A. Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2 /CH4 separation. J. Nat. Gas Sci. Eng. 2020, 75, 103156. [Google Scholar] [CrossRef]
- Feng, H.; Hong, T.; Mahurin, S.M.; Vogiatzis, K.D. Gas separation mechanism of CO2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes. Polym. Chem. 2017, 8, 3341–3350. [Google Scholar] [CrossRef]
- Kossov, A.A.; Litvinova, E.G.; Ezhov, A.A.; Khotimskii, V.S.; Shishatskii, S.M.; Buhr, K. Copolymers of 1-(3,3,3-Trifluoropropyldimethylsilyl)-1-Propyne with 1-Trimethylsilyl-1-Propyne as Membrane Materials for Separation of Gas Mixtures Containing Hydrocarbons. Petrol. Chem. 2018, 58, 1123–1128. [Google Scholar] [CrossRef]
- Grushevenko, E.A.; Borisov, I.L.; Bakhtin, D.S.; Bondarenko, G.N.; Levin, I.S.; Volkov, A.V. Silicone rubbers with alkyl side groups for C3+ hydrocarbon separation. React. Funct. Polym. 2019, 134, 156–165. [Google Scholar] [CrossRef]
- Yang, J.; Vaidya, M.M.; Harrigan, D.J.; Duval, S.A.; Hamad, F. Modified rubbery siloxane membranes for enhanced C3+ hydrocarbon recovery from natural gas: Pure and multicomponent gas permeation evaluation. Sep. Purif. Technol. 2020, 242, 116774. [Google Scholar] [CrossRef]
- Prajapati, P.K.; Kansara, A.M.; Aswal, V.K.; Singh, P.S. High oxygen permeable Zeolite poly(dimethylsiloxane) membrane for air separation. J. Appl. Polym. Sci. 2019, 136, 48047. [Google Scholar] [CrossRef]
- Sander, R.; Reijerkerk, M.H.; Knoef, K.N.; Matthias, W. Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. J. Membr. Sci. 2010, 352, 126–135. [Google Scholar]
- Belov, N.A.; Tarasenkov, A.N.; Tebeneva, N.A.; Vasilenko, N.G.; Shandryuk, G.A.; Yampolskii, Y.P.; Muzafarov, A.M. Synthesis and Gas-Transport Properties of Iron- and Zirconium-Containing Polydimethylsiloxanes. Polymer. Sci. 2018, 60, 405–413. [Google Scholar] [CrossRef]
- Liu, H.; Wang, N.; Zhao, C.; Ji, S.; Li, J. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures—A review. Chin. J. Chem. Eng. 2018, 26, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg. Chem. Front. 2016, 3, 896–909. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, G.; Liu, Y.; Xiong, R.; Wu, W.; Yang, F.; Liu, L.; Chen, J.; Li, J. Exploiting Giant-Pore Systems of Nanosized MIL-101 in PDMS Matrix for Facilitated Reverse-Selective Hydrocarbon Transport. ACS Appl. Mater. Interfaces 2020, 12, 1511–1522. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, Y.; Johnson, J.R.; Karvan, O.; Koros, W.J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 2012, 389, 34–42. [Google Scholar] [CrossRef]
- Japip, S.; Wang, H.; Xiao, Y.; Chung, T. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174. [Google Scholar] [CrossRef]
- Yang, F.; Mu, H.; Wang, C.; Xiang, L.; Yao, K.; Liu, L.; Yang, Y.; Han, Y.; Li, Y.; Pan, Y. Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C3H6/C3H8 Separation. Chem. Mater. 2018, 30, 3467–3473. [Google Scholar] [CrossRef]
- Liu, D.; Xiang, L.; Chang, H.; Chen, K.; Wang, C.; Pan, Y.; Li, Y.; Jiang, Z. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chem. Eng. Sci. 2019, 204, 151–160. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Q.; Shen, J.; Huang, K.; Liu, G.; Zhao, J.; Duan, J.; Jin, W. Hydrophobic-functionalized ZIF-8 nanoparticles incorporated PDMS membranes for high-selective separation of propane/nitrogen. Asia-Pac. J. Chem. Eng. 2017, 12, 110–120. [Google Scholar] [CrossRef]
- Fang, M.; Wu, C.; Yang, Z.; Wang, T.; Xia, Y.; Li, J. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation. J. Membr. Sci. 2015, 474, 103–113. [Google Scholar] [CrossRef]
- Heck, H.H.; Hall, M.L.; Santos, R.D.; Tomadakis, M.M. Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X. Sep. Sci. Technol. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 2015, 499, 65–79. [Google Scholar] [CrossRef]
- Henninger, S.K.; Ernst, S.J.; Gordeeva, L.; Bendix, P.; Frohlich, D. New materials for adsorption heat transformation and storage. Renew. Energ. 2017, 110, 59–68. [Google Scholar] [CrossRef]
- Carreon, M.A. Molecular sieve membranes for N2/CH4 separation. J. Mater. Res. 2018, 33, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Santaniello, A.; Renzo, A.D.; Maio, F.D.; Belov, N.A.; Yampolskii, Y.P.; Golemme, G. Competing non ideal behaviour of SAPO-34 and Poly(hexafluoropropylene) in mixed matrix membranes. Micropor. Mesopor. Mat. 2020, 303, 110241. [Google Scholar] [CrossRef]
- Haider, B.; Dilshad, M.R.; Rehman, M.A.U.; Schmitz, J.V.; Kaspereit, M. Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeoilte for carbon dioxide separation. Sep. Sci. Technol. 2020, 248, 116899. [Google Scholar]
- Ahmad, N.A.; Leo, C.P.; Ahmad, A.L.; Izwanne, M.N. Swelling reduction of polyvinylidenefluoride hollow fiber membrane incorporated with silicoaluminophosphate-34 zeotype filler for membrane gas absorption. Sep. Sci. Technol. 2018, 212, 941–951. [Google Scholar] [CrossRef]
- Sodeifian, G.; Raji, M.; Asghari, M.; Rezakazemi, M.; Dashti, A. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin. J. Chem. Eng. 2019, 27, 322–334. [Google Scholar] [CrossRef]
- Chua, L.K.; Jusoh, N.J.; Yeong, Y.F. Fabrication of SAPO-34 and Silane-modified SAPO-34/Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. J. Appl. Sci. Agric. 2015, 10, 215–221. [Google Scholar]
- Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 482–507. [Google Scholar] [CrossRef]
- Zhan, X.; Li, J.D.; Fang, C.; Han, X.L. Pervaporation separation of ethanol/water mixtures with chlorosilane modifird silicalite-1/PDMS hybrid membranes. Chin. J. Polym. Sci. 2010, 28, 625–635. [Google Scholar] [CrossRef]
- Cai, W.B.; Sun, Y.Z.; Piao, X.L.; Li, J.D.; Zhu, S.L. Solvent recovery from soybean oil/Hexane Miscella by PDMS Composite Membrane. Chin. J. Chem. Eng. 2011, 19, 575–580. [Google Scholar] [CrossRef]
- Liu, L.L.; Han, X.L.; Hu, W.L.; Zhao, B.X.; Fan, A. Desulfurization Performance of Polydimethylsiloxane Membranes by Pervaporation: Effect of Cross-linking Agents. Polym. Eng. Sci. 2017, 57, 1127–1135. [Google Scholar] [CrossRef]
- Jafarinasab, M.; Barzin, J.; Mortaheb, H.R.; Mobedi, H. Structure and performance characterization of PDMS/PES-based pervaporation membranes for ethanol/water separation. Iran. Polym. J. 2015, 24, 989–1002. [Google Scholar] [CrossRef]
- Li, Y.; Chung, T.-S.; Cao, C.; Kulprathipanja, S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 2005, 260, 45–55. [Google Scholar] [CrossRef]
- Li, Y.; Guan, H.-M.; Chung, T.-S.; Kulprathipanja, S. Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. J. Membr. Sci. 2006, 275, 17–28. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, J.Z.; Li, H.; Hua, K.S.; Deng, M. Poly (amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. J. Energy Chem. 2014, 23, 227–234. [Google Scholar] [CrossRef]
- Moore, T.T.; Koros, W.J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 2005, 739, 87–98. [Google Scholar] [CrossRef]
- Klonos, P.; Panagopoulou, A.; Bokobza, L.; Kyritsis, A.; Peoglos, V.; Pissis, P. Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly (dimethylsiloxane). Polymer 2010, 51, 5490–5499. [Google Scholar] [CrossRef]
- Ebengou, R.; Cohen-Addad, J. Silica-poly (dimethylsiloxane) mixtures: n.m.r. approach to the crystallization of adsorbed chains. Polymer 1994, 35, 2962–2969. [Google Scholar] [CrossRef]
- Aranguren, M.I. Crystallization of polydimethylsiloxane: Effect of silica filler and curing. Polymer 1998, 39, 4897–4903. [Google Scholar] [CrossRef]
- Nour, M.; Berean, K.; Balendhran, S.; Jian, Z.O.; Plessis, J.D. CNT/PDMS composite membranes for H2 and CH4 gas separation. Int. J. Hydrogen Energy 2013, 38, 10494–10501. [Google Scholar] [CrossRef] [Green Version]
- Hossain, I.; Husna, A.; Chaemchuen, S.; Verpoort, F.; Kim, T.H. Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO- 66-NH2 into PEG/PPGPDMS-Based Rubbery Polymer for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2020, 12, 57916–57931. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Kaschemekat, J.H. The design of membrane vapor–gas separation systems. J. Membr. Sci. 1998, 151, 55–62. [Google Scholar] [CrossRef]
- Huang, Y.; Merkel, T.C.; Baker, R.W. Pressure ratio and its impact on membrane gas separation processes. J. Membr. Sci. 2014, 463, 33–40. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, H.; Chen, J.; Tao, W.; Cao, X. A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation. J. Membr. Sci. 2016, 499, 290–300. [Google Scholar] [CrossRef]
Separation Factors | Propane Permeance | |
---|---|---|
SAPO-34/PDMS MMMs | 14.2 | 97.7 |
SAPO-34 (OTCS)/PDMS MMMs | 18.8 | 139.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Xie, J.; Luo, J.; Chen, X.; Wang, M.; Wang, Y.; Li, J. n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation. Separations 2022, 9, 64. https://doi.org/10.3390/separations9030064
Cai W, Xie J, Luo J, Chen X, Wang M, Wang Y, Li J. n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation. Separations. 2022; 9(3):64. https://doi.org/10.3390/separations9030064
Chicago/Turabian StyleCai, Weibin, Jiangyu Xie, Jingyu Luo, Xiaohan Chen, Mingqian Wang, Yujun Wang, and Jiding Li. 2022. "n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation" Separations 9, no. 3: 64. https://doi.org/10.3390/separations9030064
APA StyleCai, W., Xie, J., Luo, J., Chen, X., Wang, M., Wang, Y., & Li, J. (2022). n-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation. Separations, 9(3), 64. https://doi.org/10.3390/separations9030064