Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Tartary Buckwheat Extracts
2.3. Animal Experiments
2.4. Sample Preparation
2.5. Instrumentation and Analytical Conditions
2.6. Data Analysis
3. Results and Discussion
3.1. Identification and Analysis Strategy Establishment
3.2. Chemical Components
3.3. Metabolite Profiling in Biological Samples
3.3.1. Metabolite Identification in Plasma
3.3.2. Metabolite Identification in Bile
3.3.3. Metabolite Identification in Urine
3.3.4. Metabolite Identification in Feces
3.4. Identification of False Positive Peak
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/publications/i/item/global (accessed on 1 September 2022).
- Asrani, S.K.; Mellinger, J.; Arab, J.P.; Shah, V.H. Reducing the global burden of alcohol-associated liver disease: A blueprint for action. Hepatology 2021, 73, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Room, R.; Hao, W. Alcohol and related health issues in China: Action needed. Lancet. Glob. Health 2015, 3, e190–e191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, M.M.; Kim, N.J.; Berry, K.; Moon, A.M.; Su, F.; Vutien, P.; Green, P.K.; Williams, E.C.; Ioannou, G.N. Associations between alcohol use and liver-related outcomes in a large national cohort of patients with cirrhosis. Hepatol. Commun. 2021, 5, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.D.; Fuchs, S.C. The Effect of alcohol on blood pressure and hypertension. Curr. Hypertens. Rep. 2021, 23, 42. [Google Scholar] [CrossRef]
- Sushma; Divakar, A.; Kanchan, S.; Jha, G.; Mishra, S.; Sharma, D.; Rath, S.K. Alcohol induced impairment/abnormalities in brain: Role of micrornas. Neurotoxicology 2021, 87, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Buckwheat starch: Structures, properties, and applications. Trends Food Sci. Technol. 2016, 49, 121–135. [Google Scholar] [CrossRef]
- Ge, R.H.; Wang, H. Nutrient components and bioactive compounds in Tartary buckwheat bran and flour as affected by thermal processing. Int. J. Food Prop. 2020, 23, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary buckwheat in human nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef]
- Jing, R.; Li, H.Q.; Hu, C.L.; Jiang, Y.P.; Qin, L.P.; Zheng, C.J. Phytochemical and pharmacological profiles of three fagopyrum buckwheats. Int. J. Mol. Sci. 2016, 17, 589. [Google Scholar] [CrossRef]
- Qin, P.; Ma, T.; Wu, L.; Shan, F.; Ren, G. Identification of Tartary buckwheat tea aroma compounds with gas chromatography-mass spectrometry. J. Food Sci. 2011, 76, S401–S407. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, K.; Zhang, H.; Yao, H. Purification and characterization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. J. Agric. Food Chem. 2007, 55, 6958–6961. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Choi, J.Y.; Lee, J.M.; Lee, S.; Cho, E.J. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells. Food Funct. 2015, 6, 2664–2670. [Google Scholar] [CrossRef]
- Lee, M.S.; Shin, Y.; Jung, S.; Kim, S.Y.; Jo, Y.H.; Kim, C.T.; Yun, M.K.; Lee, S.J.; Sohn, J.; Yu, H.J.; et al. The Inhibitory effect of Tartary Buckwheat extracts on adipogenesis and inflammatory response. Molecules 2017, 22, 1160. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Shan, F.; Bian, J.; Chen, F.; Wang, M.; Ren, G. D-chiro-inositol-enriched Tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. J. Agric. Food Chem. 2008, 56, 10027–10031. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Lin, Y.; Wang, C.; Niu, B.; Xu, Y.; Zhao, G.; Zhao, J. Chemical profile, antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from Tartary buckwheat sprouts. Molecules 2022, 27, 374. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.M.; Wei, P. Anti-fatigue properties of Tartary buckwheat extracts in mice. Int. J. Mol. Sci. 2011, 12, 4770–4780. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhao, Y.; Yuan, L.; Yang, X. Protective effects of Tartary buckwheat flavonoids on high TMAO diet-induced vascular dysfunction and liver injury in mice. Food Funct. 2015, 6, 3359–3372. [Google Scholar] [CrossRef]
- Jin, H.R.; Lee, S.; Choi, S.J. Pharmacokinetics and protective effects of Tartary buckwheat flour extracts against ethanol-induced liver injury in rats. Antioxid 2020, 9, 913. [Google Scholar] [CrossRef]
- Cao, P.; Wu, Y.; Li, Y.; Xiang, L.; Cheng, B.; Hu, Y.; Jiang, X.; Wang, Z.; Wu, S.; Si, L.; et al. The important role of glycerophospholipid metabolism in the protective effects of polyphenol-enriched Tartary buckwheat extract against alcoholic liver disease. Food Funct. 2022. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, C.; Zhang, X.; Liu, Y.; Wang, Z.; Cacciamani, P.; Shi, J.; Cui, Y.; Wang, C.; Sinha, B.; et al. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am. J. Transl. Res. 2020, 12, 70–89. [Google Scholar] [PubMed]
- Liu, Y.; Gan, J.; Liu, W.; Zhang, X.; Xu, J.; Wu, Y.; Yang, Y.; Si, L.; Li, G.; Huang, J. Pharmacokinetics and novel metabolite identification of Tartary buckwheat extracts in beagle dogs following co-administration with ethanol. Pharmaceutics 2019, 11, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Q.; Li, Y.; Wu, C.; Wang, C.; Jin, Y.; Zhang, J. Metabolism of secondary metabolites isolated from Tartary buckwheat and its extract. Food Chem. 2014, 154, 134–144. [Google Scholar] [CrossRef]
- Diehl, K.H.; Hull, R.; Morton, D.; Pfister, R.; Rabemampianina, Y.; Smith, D.; Vidal, J.M.; van de Vorstenbosch, C. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 2001, 21, 15–23. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Diao, X.; Liao, M.; Sun, Y.; Zhang, L. Metabolism profiling of nevadensin in vitro and in vivo by UHPLC-Q-TOF-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1084, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, J.; Liang, C.; Sun, Y.; Zhang, L. UHPLC-Q-TOF-MS/MS method based on four-step strategy for metabolism study of fisetin in vitro and in vivo. J. Agric. Food Chem. 2017, 65, 10959–10972. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, K.H.; Yoon, Y.-H.; Cho, E.J.; Lee, S.J.N.P.S. Identification of triterpenoids and flavonoids from the seeds of Tartary buckwheat. Nat. Prod. Sci. 2013, 19, 137–144. [Google Scholar]
- Choi, M.; Sathasivam, R.; Nguyen, B.V.; Park, N.I.; Woo, S.-H.; Park, S.U.J.P. Expression analysis of phenylpropanoid pathway genes and metabolomic analysis of phenylpropanoid compounds in adventitious, hairy, and seedling roots of Tartary buckwheat. Plants 2021, 11, 90. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Yang, Q.; Gong, X.; Ma, H.; Dang, K.; Chen, G.; Gao, X.; Feng, B. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules 2019, 24, 1310. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Su, Y.; Dong, G.; Qian, G.; Shi, Y.; Mi, Y.; Zhang, Y.; Xue, J.; Du, W.; Shi, T.; et al. Liquid chromatography-mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations. Food Chem. 2020, 331, 127354. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Xiang, L.; Zhou, F.; Li, H.; Su, Y.; Xu, X.; Wang, Q. Metabolites identification of bioactive compounds daturataturin a, daturametelin i, n-trans-feruloyltyramine, and cannabisin f from the seeds of datura metel in rats. Front. Pharmacol. 2018, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.; Kuhnle, G.G.; Williams, R.J.; Rice-Evans, C. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem. J. 2003, 372, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Beak, S.Y.; Choi, I.; Sung, J.S. Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci. Biotechnol. 2018, 27, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res. 2001, 35, 941–952. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Jiang, Z.; Xie, W.; Zhang, X. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am. J. Chin. Med. 2015, 43, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.H.; Chun, Y.S.; Kim, J.; Ku, S.K.; Jeon, S.; Park, T.S.; Shim, S.M. Modulating lipid and glucose metabolism by glycosylated kaempferol rich roasted leaves of Lycium chinense via upregulating adiponectin and AMPK activation in obese mice-induced type 2 diabetes. J. Funct. Foods 2020, 72, 104072. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.C.; Zhou, R.J.; Zhao, X.; Liu, M.; Ye, H.; Xie, M.L. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem. Biol. Interact. 2017, 275, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, X.; Li, J.; Yin, H.; Liu, F.; Hu, C.; Li, L. Apigenin attenuates acetaminophen-induced hepatotoxicity by activating amp-activated protein kinase/carnitine palmitoyltransferase i pathway. Front. Pharmacol. 2020, 11, 549057. [Google Scholar] [CrossRef]
- Leal, A.; de Oliveira, A.P.; Santos, R.F.D.; Soares, J.M.D.; Lavor, E.M.; Pontes, M.C.; Lima, J.T.; Santos, A.; Tomaz, J.C.; Oliveira, G.G.; et al. Determination of phenolic compounds, in vitro antioxidant activity and characterization of secondary metabolites in different parts of Passiflora cincinnata by HPLC-DAD-MS/MS analysis. Nat. Prod. Res. 2020, 34, 995–1001. [Google Scholar] [CrossRef]
- Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med. 2001, 30, 1274–1285. [Google Scholar] [CrossRef]
- Mullen, W.; Boitier, A.; Stewart, A.J.; Crozier, A. Flavonoid metabolites in human plasma and urine after the consumption of red onions: Analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. J. Chromatogr. A 2004, 1058, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xue, C.; Shang, E.X.; Duan, J.A.; Tang, Y.; Qian, D. Identification of hyperoside metabolites in rat using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo-Almenara, X.; Montenegro-Burke, J.R.; Benton, H.P.; Siuzdak, G. Annotation: A computational solution for streamlining metabolomics analysis. Anal. Chem. 2018, 90, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Gathungu, R.M.; Larrea, P.; Sniatynski, M.J.; Marur, V.R.; Bowden, J.A.; Koelmel, J.P.; Starke-Reed, P.; Hubbard, V.S.; Kristal, B.S. Optimization of electrospray ionization source parameters for lipidomics to reduce misannotation of in-source fragments as precursor ions. Anal. Chem. 2018, 90, 13523–13532. [Google Scholar] [CrossRef]
- Xu, Y.F.; Lu, W.; Rabinowitz, J.D. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Anal. Chem. 2015, 87, 2273–2281. [Google Scholar] [CrossRef] [Green Version]
- Parcher, J.F.; Wang, M.; Chittiboyina, A.G.; Khan, I.A. In-source collision-induced dissociation (IS-CID): Applications, issues and structure elucidation with single-stage mass analyzers. Drug Test. Anal. 2018, 10, 28–36. [Google Scholar] [CrossRef]
- Watson, D.G. A rough guide to metabolite identification using high resolution liquid chromatography mass spectrometry in metabolomic profiling in metazoans. Comput. Struct. Biotechnol. J. 2013, 4, e201301005. [Google Scholar] [CrossRef]
No. | tR (min) | Formula | [M+H]+ (m/z) | Error (ppm) | Fragment Ions (m/z) | Identification |
---|---|---|---|---|---|---|
TB1 | 27.22 | C27H30O16 | 611.1606 | −0.98 | 611, 465, 303 | Rutin |
TB2 | 30.00 | C27H30O15 | 595.1665 | 0.34 | 595, 449, 287 | Kaempferol-3-O-rutinoside |
TB3 | 30.15 | C18H19NO4 | 314.1383 | −2.86 | 314, 299, 177, 145, 121 | N-trans-Feruloyltyramine |
TB4 | 31.69 | C15H10O7 | 303.0501 | −1.32 | 303, 285, 257, 229, 201, 165, 153, 121 | Quercetin |
TB5 | 33.40 | C15H10O6 | 287.0551 | −1.74 | 287, 213, 165, 153, 121 | Kaempferol |
TB6 | 33.66 | C15H10O5 | 271.0603 | −1.11 | 271, 189, 153 | Apigenin |
TB7 | 36.24 | C16H12O5 | 285.0759 | −1.40 | 285, 271, 242, 191 | Acacetin |
No. | tR (min) | Formula | [M+H]+ (m/z) | Error (ppm) | Fragment Ions (m/z) | Source | Structural Identification | Metabolic Pathway |
---|---|---|---|---|---|---|---|---|
M1 | 10.03 | C21H18O15S | 543.0443 | −0.37 | 463, 367, 287 | B | Kaempferol glucuronide sulphate | Glucuronidation, Sulfation |
M2 | 10.23 | C21H18O16S | 559.0383 | −1.97 | 479, 383, 303 | B | Quercetin glucuronide sulphate | Glucuronidation, Sulfation |
M3 | 12.47 | C16H12O8S | 365.0320 | −3.01 | 285 | B | Acacetin-5/7-sulphate | Sulfation |
M4 | 13.35 | C21H18O14S | 527.0483 | −2.47 | 351, 271 | B | Apigenin glucuronide sulphate | Glucuronidation, Sulfation |
M5 | 13.82 | C28H32O17 | 641.1660 | −9.05 | 641, 480, 465, 321, 303 | U | Quercetin glucoside glucuronide | Glucuronidation |
M6 | 17.71 | C21H18O11 | 447.0918 | −2.01 | 271 | B | Apigenin glucuronide | Glucuronidation |
M7 | 18.09 | C22H20O11 | 461.1073 | −2.39 | 285 | B | Acacetin-5/7-O-glucuronide | Glucuronidation |
M8 | 20.88 | C21H18O11 | 447.0917 | −2.24 | 271 | B | Apigenin glucuronide | Glucuronidation |
M9 | 23.54 | C21H18O13 | 479.0819 | −1.46 | 303, 285, 257, 225 | B, F | Quercetin glucuronide | Glucuronidation |
M10 | 28.23 | C18H20O3 | 285.1478 | −4.56 | 285, 271, 267, 239, 133 | F | Methyl apigenin | Methylation |
M11 | 28.60 | C22H20O13 | 493.0966 | −3.24 | 317 | P | Methyl quercetin glucuronide | Methylation, Glucuronidation |
M12 | 28.74 | C15H10O11S | 399.0049 | 6.77 | 399, 319, 303, 245, 229 | F | Hydroxyl quercetin sulphate | Hydroxylation, Sulfation |
M13 | 29.32 | C21H18O12 | 463.0859 | −3.89 | 359, 287 | P | 3-OH kaempferol glucuronide | Glucuronidation |
M14 | 29.36 | C22H20O13 | 493.0966 | −3.24 | 317 | P | Methyl quercetin glucuronide | Methylation, Glucuronidation |
M15 | 30.15 | C22H20O13 | 493.0966 | −3.24 | 317 | P | Methyl quercetin glucuronide | Methylation, Glucuronidation |
M16 | 30.29 | C15H10O8S | 351.0160 | −4.27 | 351, 271 | B, U | Apigenin sulphate | Sulfation |
M17 | 30.56 | C16H12O7 | 317.0655 | −1.89 | 303, 285, 165 | B | 3′-/4′-Methyl quercetin | Methylation |
M18 | 30.71 | C21H18O13 | 479.0809 | −3.55 | 479, 303 | P | Quercetin glucuronide | Glucuronidation |
M19 | 31.31 | C15H10O10S | 383.0056 | −4.44 | 303 | P | Quercetin sulphate | Sulfation |
M20 | 33.04 | C21H18O13 | 479.0820 | −1.25 | 303 | P | Quercetin glucuronide | Glucuronidation |
M21 | 33.22 | C15H10O8S | 351.0166 | −2.56 | 271 | P | Apigenin sulphate | Sulfation |
M22 | 33.71 | C16H12O7 | 317.0650 | −3.47 | 302, 285 | P | Methyl quercetin | Methylation |
M23 | 35.11 | C25H20O10 | 481.1120 | −3.12 | 481, 315, 287 | F | Hydroxyl kaempferol glucoside | Hydroxylation |
M24 | 35.17 | C30H18O8 | 507.1075 | −0.99 | 507, 465, 447, 357 | F | Acetylated methyl hydroxyl quercetin xyloside | Methylation, Hydroxylation, Acetylation |
M25 | 35.38 | C21H18O12 | 463.0871 | −1.30 | 359, 287 | P | 5-OH Kaempferol glucuronide | Glucuronidation |
M26 | 37.00 | C15H10O10S | 383.0060 | −3.39 | 303 | P | Quercetin sulphate | Sulfation |
No. | Metabolite | Retention Time of True Metabolite (min) | m/z | Fragments of True Metabolite | Retention Time of False Positive Peak | m/z of the False Positives | Fragments of False Positive Peak (min) |
---|---|---|---|---|---|---|---|
1 | Kaempferol glucuronide sulphate | 10.03 | 543.0443 | 463, 367, 287 | 10.04 | 544.0575 a | 463, 367, 287 |
2 | Quercetin glucuronide sulphate | 10.23 | 559.0383 | 479, 383, 303 | 10.27 | 560.0316 a | 479, 383, 303 |
3 | Apigenin glucuronide sulphate | 13.35 | 527.0483 | 351, 271 | 13.64 | 528.0517 a | 351, 271 |
4 | Quercetin glucoside glucuronide | 13.82 | 641.1660 | 641, 480, 465, 321, 303 | 13.82 | 481.1211 b | 480, 321, 303, 162 |
5 | Apigenin glucuronide | 17.71 | 447.0918 | 271 | 17.55 | 448.0948 a | 271 |
6 | Methyl quercetin glucuronide | 28.60 | 493.0966 | 317 | 28.57 | 494.0988 a | 317, 302 |
7 | Kaempferol glucuronide | 29.32 | 463.0859 | 359, 287 | 29.38 | 464.0894 a | 359, 287 |
8 | Methyl quercetin glucuronide | 29.36 | 493.0966 | 317 | 29.20 | 494.0988 a | 317, 302 |
9 | Methyl quercetin glucuronide | 30.15 | 493.0966 | 317 | 30.14 | 494.0988 a | 317, 302 |
10 | Quercetin glucuronide | 33.04 | 479.0820 | 303 | 33.01 | 303.0495 b | 285, 153 |
11 | Methyl quercetin | 33.71 | 317.0650 | 302, 285 | 33.62 | 318.0680 a | 317, 302, 285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Xu, J.; Liu, W.; Wu, Y.; Jiang, X.; Hu, Y.; Zhang, Y.; Yang, Q.; Wang, Z.; Yang, Y.; et al. Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry. Separations 2022, 9, 407. https://doi.org/10.3390/separations9120407
Xiang L, Xu J, Liu W, Wu Y, Jiang X, Hu Y, Zhang Y, Yang Q, Wang Z, Yang Y, et al. Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry. Separations. 2022; 9(12):407. https://doi.org/10.3390/separations9120407
Chicago/Turabian StyleXiang, Liping, Jian Xu, Wanyu Liu, Yue Wu, Xin Jiang, Yixin Hu, Yao Zhang, Qiang Yang, Zhe Wang, Yuejun Yang, and et al. 2022. "Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry" Separations 9, no. 12: 407. https://doi.org/10.3390/separations9120407
APA StyleXiang, L., Xu, J., Liu, W., Wu, Y., Jiang, X., Hu, Y., Zhang, Y., Yang, Q., Wang, Z., Yang, Y., Wu, S., Si, L., Huang, J., & Zhang, Y. (2022). Metabolite Profiling of Tartary Buckwheat Extracts in Rats Following Co-Administration of Ethanol Using UFLC-Q-Orbitrap High-Resolution Mass Spectrometry. Separations, 9(12), 407. https://doi.org/10.3390/separations9120407