Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Stock Solution, Calibration Standard, and Sample Preparation for Quality Control
2.3. Chromatographic Conditions
2.4. Plant Material
2.5. Drying Method and Color Measurement
2.6. Plant Sample Preparation
2.7. Method Validation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Chromatographic Condition
3.2. HPLC Method Validation
3.3. Selection of Extraction Procedure and Method Applicability: Identification and Quantification of Tannin, Flavonoids, Cinnamic Acid, Essential Oil, and Ascorbic Acid
3.4. Effect of Drying Methods on Leaf Color Characteristics and Tannin, Flavonoid, Cinnamic Acid, Essential Oil, and Vitamin Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Englberger, K. Invasive Weeds of Pohnpei: A Guide for Identification and Public Awareness; Conservation Society of Pohnpei (CSP): Kolonia, Federated States of Micronesia, 2009; p. 29. [Google Scholar]
- Sun, X.; Chen, W.; Dai, W.; Xin, H.; Rahmand, K.; Wang, Y.; Zhang, J.; Zhang, S.; Xu, L.; Han, T. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2020, 263, 112897. [Google Scholar] [CrossRef]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Rakariyatham, N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005, 92, 491–497. [Google Scholar] [CrossRef]
- Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenphol, K.; Wongvein, C.; Ruttanaweang, P.; Wongwattanavuch, P.; Suksamrarn, A. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol. 2004, 93, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.N.N.A.; Furuta, T.; Kojima, S.; Takane, K.; Mohd, M.A. Antimalarial activity of extracts of Malaysian medicinal plants. J. Ethnopharmacol. 1999, 64, 249–254. [Google Scholar] [CrossRef]
- Chanprapai, P.; Chavasiri, W. Antimicrobial activity from Piper sarmentosum Roxb. against rice pathogenic bacteria and fungi. J. Integr. Agric. 2017, 16, 2513–2524. [Google Scholar] [CrossRef] [Green Version]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2021, 25, 231–240. [Google Scholar]
- Ariffin, S.H.Z.; Omar, W.H.A.W.; Ariffin, Z.Z.; Safian, M.F.; Senafi, S.; Wahab, R.M.A. Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line. Cancer Cell. Int. 2009, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Ismail, S.M.; Hui, C.K.; Aminuddin, A.; Ugusman, A. Piper sarmentosum as an Antioxidant: A Systematic Review. Sains. Malays. 2018, 47, 2359–2368. [Google Scholar] [CrossRef]
- Ridtitid, W.; Rattanaprom, W.; Thaina, P.; Chittrakarn, S.; Sunbhanich, M. Neuromuscular blocking activity of methanolic extract of Piper sarmentosum leaves in the rat phrenic nerve-hemidiaphragm preparation. J. Ethnopharmacol. 1998, 61, 135–142. [Google Scholar] [CrossRef]
- Amran, A.A.; Zakaria, Z.; Othman, F.; Das, S.; Raj, S.; Nordin, N.A.M.M. Aqueous extract of Piper sarmentosum decreases atherosclerotic lesions in high cholesterolemic experimental rabbits. Lipids Health Dis. 2010, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.A.; Patahuddin, H.; Mohamad, A.S.; Israf, D.A.; Sulaiman, M.R. In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J. Ethnopharmacol. 2010, 128, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Khonkhaeng, B.; Foiklang, S.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of supplementation of Piper sarmentosum leaf powder on feed efficiency, rumen ecology and rumen protozoal concentration in thai native beef cattle. Animals 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Cienc. Agrotec. 2020, 44, e012420. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Ciênc. Rural 2020, 50, e20191001. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2020. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Tech. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Paengkoum, S.; Tatsapong, P.; Taethaisong, N.; Sorasak, T.; Purba, R.A.P.; Paengkoum, P. Empirical evaluation and prediction of protein requirements for maintenance and growth of 18–24 months old thai swamp buffaloes. Animals 2021, 11, 1405. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant flavonoids to improve productivity of ruminants—A review. Anim. Feed Sci. Tech. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P.; Paengkoum, S. The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0216187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef] [Green Version]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Adisakwattana, S.; Thilavech, T.; Sompong, W.; Pasukamonset, P. Interaction between ascorbic acid and gallic acid in a model of fructose-mediated protein glycation and oxidation. Electron. J. Biotechnol. 2017, 27, 32–36. [Google Scholar] [CrossRef]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 33–39. [Google Scholar]
- Silva, G.V.D.; Machado, B.A.S.; Oliveira, W.P.D.; Silva, C.F.G.D.; Quadros, C.P.D.; Druzian, J.I.; Ferreira, E.D.S.; Umsza-Guez, M.A. Effect of drying methods on bioactive compounds and antioxidant capacity in grape skin residues from the new hybrid variety “BRS Magna”. Molecules 2020, 25, 3701. [Google Scholar] [CrossRef] [PubMed]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Arslan, D.; Özcan, M.M. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy Convers. Manag. 2008, 49, 1258–1264. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC International Suite 500: Gaitherburg, MD, USA, 2005. [Google Scholar]
- Kaps, M.; Lamberson, W.R. Biostatistics for Animal Science; CABI: Oxfordshire, UK, 2004. [Google Scholar]
- Poole, C.F.; Lenca, N. Chapter 4—Reversed-phase liquid chromatography. In Liquid Chromatography, 2nd ed.; Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–123. [Google Scholar] [CrossRef]
- Tache, F.; Udrescu, S.; Albu, F.; Micăle, F.; Medvedovici, A. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate—Ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases. J. Pharm. Biomed. 2013, 75, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Arcari, S.G.; Bordignon, L.; Marilde, T.; Costa, L.L.F. Determination of some phenolic compounds in red wine by RP-HPLC: Method development and validation. J. Chromatogr. Sci. 2011, 49, 647–651. [Google Scholar] [CrossRef]
- Robards, K.; Haddad, P.R.; Jackson, P.E. Principles and Practice of Modern Chromatographic Methods; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Kruse, H.P.; Snyder, R.; Kirkland, J.J.; Glajch, J.L. Practical HPLC Method Development. Mol. Nutr. Food Res. 1997, 41, 380. [Google Scholar]
- Kumar, N.; Bhandari, P.; Singh, B.; Gupta, A.P.; Kaul, V.K. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. J. Sep. Sci. 2008, 31, 262–267. [Google Scholar] [CrossRef]
- Kim, J.; Um, M.; Yang, H.; Kim, I.; Lee, C.; Kim, Y.; Yoon, M.; Kim, Y.; Kim, J.; Cho, S. Method development and validation for dieckol in the standardization of phlorotannin preparations. Fish. Aquat. Sci. 2016, 19, 3. [Google Scholar] [CrossRef] [Green Version]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef] [Green Version]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K.; Bhargav, V.K. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J. Food Sci. Technol. 2014, 51, 2568–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Biba, M.; Regalado, E.L.; Wu, N.; Welch, C.J. Effect of particle size on the speed and resolution of chiral separations using supercritical fluid chromatography. J. Chromatogr. A 2014, 1363, 250–256. [Google Scholar] [CrossRef]
- Yang, X.; Ma, L.; Carr, P.W. High temperature fast chromatography of proteins using a silica-based stationary phase with greatly enhanced low pH stability. J. Chromatogr. A 2005, 1079, 213–220. [Google Scholar] [CrossRef]
- Nguyen, D.T.T.; Guillarme, D.; Rudaz, S.; Veuthey, J.L. Fast analysis in liquid chromatography using small particle size and high pressure. J. Sep. Sci. 2006, 29, 1836–1848. [Google Scholar] [CrossRef]
- Poppe, H. Some reflections on speed and efficiency of modern chromatographic methods. J. Chromatogr. A 1997, 778, 3–21. [Google Scholar] [CrossRef]
- Bactiar, C.F.; Fahami, N.A.M. LC-MS analysis of phytocomponents in the methanol extract of Piper sarmentosum leaves. Pharmacogn. Mag. 2019, 11, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Chen, M.; Ye, H.C.; Zhang, Z.K.; Li, H.; Chen, L.L.; Chen, X.L.; Yan, C.; Zhang, J. Herbicidal activities of compounds isolated from the medicinal plant Piper sarmentosum. Ind. Crops Prod. 2019, 132, 41–47. [Google Scholar] [CrossRef]
- Canbay, H.S. Effectiveness of liquid-liquid extraction, solid phase extraction, and headspace technique for determination of some volatile water-soluble compounds of rose aromatic water. Int. J. Anal. Chem. 2017, 2017, 4870671. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, J.; Lv, R.; Yuan, J.; Lin, Y.; Wang, X. An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Sep. Purif. Technol. 2007, 57, 237–241. [Google Scholar] [CrossRef]
- Chieng, T.C.; Assim, Z.B.; Fasihuddin, B.A. Toxicity and antitermite activities of the essential oils from Piper sarmentosum. Malays. J. Anal. Sci. 2008, 12, 234–239. [Google Scholar]
- Rahman, S.F.S.A.; Sijam, K.; Omar, D.; Wahab, M.Z.A. Identification of phenolic compounds and evaluation of antibacterial properties of Piper sarmentosum Roxb. against rice pathogenic bacteria. Malays. J. Microbiol. 2016, 12, 475–484. [Google Scholar]
- Ahmad, S.; Hakiman, M.; Maziah, M. Antioxidant activities, flavonoids, ascorbic acid and phenolic content of Malaysian vegetables. J. Med. Plant. Res. 2010, 4, 881–890. [Google Scholar]
- Cabo-Calvet, E.; Ortiz-Bolsico, C.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. Description of the retention and peak profile for chromolith columns in isocratic and gradient elution using mobile phase composition and flow rate as factors. Separations 2014, 1, 194–210. [Google Scholar] [CrossRef] [Green Version]
- Reschke, B.R.; Timperman, A.T. A study of electrospray ionization emitters with differing geometries with respect to flow rate and electrospray voltage. J. Am. Soc. Mass Spectrom. 2011, 22, 2115–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayaguru, K.; Routray, W.; Mohanty, S.N. Mathematical modeling and quality parameters of air-dried betel leaf (Piper betle L.). J. Food Process. Preserv. 2011, 35, 394–401. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.K. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
Organic Compound | Linearity Range (µg/mL) | Regression Equation | LOD (µg/mL) | LOQ (µg/mL) | Coefficient of Determination (R2) |
---|---|---|---|---|---|
Ascorbic acid | 5–60 | y = 2.4924x + 12.3388 | 0.531 | 1.609 | 0.9997 |
Gallic acid | 5–60 | y = 12.9818x + 2.2362 | 0.026 | 0.078 | 0.9995 |
Catechin | 5–60 | y = 2.9286x + 0.6389 | 0.385 | 1.166 | 0.9998 |
Caffeic acid | 5–60 | y = 4.8257x + 1.2590 | 0.163 | 0.494 | 0.9996 |
Syringic acid | 5–60 | y = 5.4006x + 4.7297 | 0.117 | 0.353 | 0.9997 |
Rutin | 5–60 | y = 4.4610x + 6.6243 | 0.168 | 0.509 | 0.9998 |
P-coumaric acid | 5–60 | y = 8.7897x + 5.6561 | 0.043 | 0.131 | 0.9995 |
Sinapic acid | 5–60 | y = 2.9304x + 3.7697 | 0.388 | 1.175 | 0.9995 |
Ferulic acid | 5–60 | y = 6.4391x + 10.0323 | 0.080 | 0.243 | 0.9997 |
Myricetin | 5–60 | y = 6.4988x + 7.7278 | 0.079 | 0.240 | 0.9997 |
Quercetin | 5–60 | y = 9.4149x − 29.6597 | 0.037 | 0.113 | 0.9992 |
Apigenin | 5–60 | y = 5.6536x + 11.0148 | 0.103 | 0.313 | 0.9994 |
Kaempferol | 5–60 | y = 2.0474x − 6.1211 | 0.789 | 2.392 | 0.9993 |
Eugenol | 5–60 | y = 4.2751x − 11.8916 | 0.187 | 0.567 | 0.9994 |
Organic Compound | Nominal Concentration (µg/mL) | Intra-Day Precision | Inter-Day Precision | Recovery (%) | ||
---|---|---|---|---|---|---|
Retention Time (min) | Detected Concentration (µg/mL) | Retention Time (min) | Detected Concentration (µg/mL) | |||
Ascorbic acid | 20 | 3.74 ± 0.36 | 20.28 ± 1.11 | 3.76 ± 0.08 | 19.99 ± 0.04 | 100.67 ± 1.07 |
40 | 3.74 ± 0.20 | 40.18 ± 0.39 | 3.75 ± 0.21 | 39.83 ± 0.17 | 100.01 ± 0.53 | |
60 | 3.75 ± 0.39 | 58.69 ± 1.50 | 3.76 ± 0.10 | 57.89 ± 1.41 | 96.57 ± 1.58 | |
Gallic acid | 20 | 5.54 ± 0.09 | 19.64 ± 1.25 | 5.54 ± 0.14 | 19.27 ± 0.35 | 97.28 ± 1.33 |
40 | 5.54 ± 0.12 | 39.59 ± 1.22 | 5.55 ± 0.21 | 38.67 ± 0.12 | 97.83 ± 1.48 | |
60 | 5.54 ± 0.10 | 58.52 ± 1.63 | 5.55 ± 0.12 | 57.00 ± 0.22 | 96.27 ± 1.77 | |
Catechin | 20 | 10.87 ± 0.07 | 19.91 ± 0.68 | 10.98 ± 0.13 | 19.70 ± 0.59 | 99.02 ± 0.82 |
40 | 10.87 ± 0.17 | 39.38 ± 1.64 | 11.00 ± 0.11 | 38.34 ± 0.18 | 97.15 ± 1.79 | |
60 | 10.88 ± 0.16 | 58.80 ± 0.97 | 11.01 ± 0.19 | 58.00 ± 0.20 | 97.33 ± 0.98 | |
Caffeic acid | 20 | 13.37 ± 0.20 | 19.98 ± 0.78 | 13.43 ± 0.33 | 19.76 ± 0.35 | 99.35 ± 0.82 |
40 | 13.39 ± 0.28 | 39.85 ± 0.93 | 13.47 ± 0.10 | 39.18 ± 0.29 | 98.79 ± 1.10 | |
60 | 13.46 ± 0.26 | 59.70 ± 0.67 | 13.48 ± 0.19 | 58.39 ± 0.42 | 98.41 ± 1.26 | |
Syringic acid | 20 | 13.97 ± 0.32 | 20.22 ± 1.20 | 14.08 ± 0.26 | 19.64 ± 0.81 | 99.65 ± 1.82 |
40 | 13.97 ± 0.11 | 40.51 ± 1.66 | 14.12 ± 0.37 | 39.25 ± 1.36 | 99.70 ± 1.92 | |
60 | 13.97 ± 0.08 | 59.82 ± 1.62 | 14.10 ± 0.43 | 58.92 ± 0.70 | 98.95 ± 1.01 | |
Rutin | 20 | 16.47 ± 0.11 | 20.34 ± 0.99 | 16.72 ± 0.40 | 19.85 ± 0.98 | 100.49 ± 1.57 |
40 | 16.47 ± 0.16 | 40.18 ± 0.37 | 16.71 ± 0.98 | 39.61 ± 1.07 | 99.74 ± 1.06 | |
60 | 16.47 ± 0.24 | 60.04 ± 0.20 | 16.73 ± 0.44 | 59.75 ± 0.40 | 99.82 ± 0.39 | |
P-coumaric acid | 20 | 17.79 ± 0.63 | 20.15 ± 0.74 | 17.92 ± 0.93 | 19.94 ± 0.95 | 100.22 ± 1.00 |
40 | 17.78 ± 0.24 | 40.07 ± 0.51 | 17.92 ± 0.95 | 39.81 ± 0.60 | 99.85 ± 0.63 | |
60 | 17.77 ± 0.48 | 59.92 ± 0.35 | 17.94 ± 0.82 | 59.61 ± 0.52 | 99.61 ± 0.50 | |
Sinapic acid | 20 | 18.86 ± 0.52 | 20.28 ± 0.60 | 19.08 ± 0.16 | 20.05 ± 0.76 | 100.83 ± 0.88 |
40 | 18.82 ± 0.48 | 40.44 ± 0.40 | 19.15 ± 0.45 | 40.21 ± 0.66 | 100.81 ± 0.61 | |
60 | 18.87 ± 0.70 | 60.81 ± 0.34 | 19.14 ± 0.59 | 60.56 ± 0.31 | 101.14 ± 0.38 | |
Ferulic acid | 20 | 19.19 ± 0.93 | 20.47 ± 0.68 | 19.24 ± 0.34 | 20.15 ± 0.44 | 101.55 ± 0.97 |
40 | 19.26 ± 0.95 | 40.68 ± 0.18 | 19.27 ± 0.39 | 40.44 ± 0.31 | 101.40 ± 0.39 | |
60 | 18.89 ± 0.50 | 60.80 ± 0.21 | 19.25 ± 0.86 | 60.60 ± 0.12 | 101.16 ± 0.23 | |
Myricetin | 20 | 22.80 ± 0.43 | 19.96 ± 0.90 | 23.23 ± 0.81 | 19.79 ± 0.92 | 99.38 ± 0.99 |
40 | 22.80 ± 0.59 | 39.93 ± 0.67 | 23.28 ± 0.64 | 39.51 ± 0.96 | 99.30 ± 0.97 | |
60 | 22.80 ± 0.68 | 59.61 ± 0.55 | 23.28 ± 0.78 | 59.29 ± 0.54 | 99.08 ± 0.60 | |
Quercetin | 20 | 27.64 ± 0.52 | 20.08 ± 0.52 | 29.26 ± 0.78 | 19.86 ± 0.71 | 99.83 ± 0.82 |
40 | 28.04 ± 0.11 | 39.91 ± 0.59 | 29.38 ± 0.88 | 39.45 ± 0.46 | 99.20 ± 0.78 | |
60 | 28.49 ± 0.86 | 59.36 ± 0.85 | 29.37 ± 0.70 | 58.72 ± 0.59 | 98.40 ± 0.91 | |
Apigenin | 20 | 32.58 ± 0.55 | 20.01 ± 0.98 | 32.71 ± 0.85 | 19.81 ± 1.38 | 99.56 ± 1.28 |
40 | 32.31 ± 0.93 | 40.04 ± 0.32 | 32.74 ± 0.78 | 39.55 ± 1.03 | 99.48 ± 0.97 | |
60 | 32.28 ± 0.62 | 59.89 ± 0.27 | 32.73 ± 0.97 | 58.95 ± 0.95 | 99.03 ± 1.06 | |
Kaempferol | 20 | 33.19 ± 0.42 | 19.91 ± 0.37 | 33.46 ± 0.65 | 19.77 ± 0.42 | 99.21 ± 0.53 |
40 | 33.19 ± 0.53 | 39.89 ± 0.19 | 33.46 ± 0.57 | 39.78 ± 0.19 | 99.59 ± 0.23 | |
60 | 33.18 ± 0.27 | 59.53 ± 0.77 | 33.49 ± 0.68 | 58.58 ± 0.72 | 98.43 ± 1.10 | |
Eugenol | 20 | 37.03 ± 0.05 | 19.95 ± 0.16 | 37.55 ± 0.72 | 19.87 ± 0.23 | 99.55 ± 0.28 |
40 | 36.22 ± 0.78 | 39.74 ± 0.22 | 37.31 ± 0.89 | 39.59 ± 0.29 | 99.16 ± 0.31 | |
60 | 36.06 ± 0.65 | 60.09 ± 0.11 | 37.12 ± 0.96 | 60.10 ± 0.21 | 100.15 ± 0.16 |
Organic Compound | Wavelength Detection (nm) | Concentration (mg/g on Dry Weight Basis) a | |||
---|---|---|---|---|---|
Methanol | Chloroform | Hexane | Average | ||
CSL | |||||
Ascorbic acid | 272, 280, 310 | 0.38 ± 0.12 | nd | nd | 0.13 ± 0.04 |
Gallic acid | 272, 280, 310 | 0.12 ± 0.03 | nd | nd | 0.04 ± 0.01 |
Catechin | 272, 280, 310 | 0.20 ± 0.10 | nd | nd | 0.07 ± 0.03 |
Caffeic acid | 272, 280, 310 | 0.65 ± 0.27 | 0.04 ± 0.01 | nd | 0.23 ± 0.09 |
Syringic acid | 272, 280, 310 | 0.06 ± 0.03 | nd | nd | 0.02 ± 0.01 |
Rutin | 272, 280, 310 | 0.49 ± 0.15 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.19 ± 0.05 |
P-coumaric acid | 272, 280, 310 | 0.25 ± 0.07 | nd | 0.03 ± 0.01 | 0.09 ± 0.02 |
Sinapic acid | 272, 280, 310 | 0.10 ± 0.07 | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.05 ± 0.03 |
Ferulic acid | 272, 280, 310 | 0.06 ± 0.03 | nd | 0.02 ± 0.01 | 0.03 ± 0.01 |
Myricetin | 272, 280, 310 | 0.08 ± 0.05 | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.06 ± 0.02 |
Quercetin | 272, 280, 310 | 0.20 ± 0.12 | 0.17 ± 0.09 | 0.50 ± 0.26 | 0.29 ± 0.09 |
Apigenin | 272, 280, 310 | 0.55 ± 0.21 | 0.14 ± 0.08 | 2.53 ± 0.50 | 1.07 ± 0.18 |
Kaempferol | 272, 280, 310 | 0.22 ± 0.07 | 0.11 ± 0.06 | 1.47 ± 0.96 | 0.60 ± 0.33 |
Eugenol | 272, 280, 310 | 0.37 ± 0.15 | 0.19 ± 0.09 | 1.53 ± 0.47 | 0.70 ± 0.17 |
NSL | |||||
Ascorbic acid | 272, 280, 310 | 0.37 ± 0.06 | nd | nd | 0.12 ± 0.02 |
Gallic acid | 272, 280, 310 | 0.16 ± 0.03 | nd | nd | 0.05 ± 0.01 |
Catechin | 272, 280, 310 | 0.20 ± 0.05 | nd | nd | 0.07 ± 0.02 |
Caffeic acid | 272, 280, 310 | 0.74 ± 0.15 | 0.04 ± 0.01 | nd | 0.26 ± 0.05 |
Syringic acid | 272, 280, 310 | 0.06 ± 0.02 | nd | nd | 0.02 ± 0.01 |
Rutin | 272, 280, 310 | 0.51 ± 0.07 | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.19 ± 0.03 |
P-coumaric acid | 272, 280, 310 | 0.15 ± 0.11 | nd | 0.03 ± 0.01 | 0.06 ± 0.04 |
Sinapic acid | 272, 280, 310 | 0.09 ± 0.07 | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.05 ± 0.03 |
Ferulic acid | 272, 280, 310 | 0.06 ± 0.02 | nd | 0.02 ± 0.01 | 0.03 ± 0.01 |
Myricetin | 272, 280, 310 | 0.07 ± 0.05 | 0.05 ± 0.02 | 0.05 ± 0.03 | 0.06 ± 0.02 |
Quercetin | 272, 280, 310 | 0.19 ± 0.09 | 0.17 ± 0.08 | 0.50 ± 0.30 | 0.29 ± 0.11 |
Apigenin | 272, 280, 310 | 0.42 ± 0.20 | 0.15 ± 0.07 | 2.53 ± 0.38 | 1.03 ± 0.14 |
Kaempferol | 272, 280, 310 | 0.22 ± 0.06 | 0.11 ± 0.05 | 1.77 ± 0.90 | 0.70 ± 0.32 |
Eugenol | 272, 280, 310 | 0.36 ± 0.09 | 0.18 ± 0.11 | 1.61 ± 0.28 | 0.72 ± 0.11 |
Organic Compound | CSL | NSL | SEM | p Value 1 | ||
---|---|---|---|---|---|---|
Cultivated Site | Sampling Time | Interaction | ||||
Tannin | 0.05 | 0.04 | 0.007 | 0.062 | 0.672 | 0.595 |
Flavonoid | 2.39 | 2.34 | 0.039 | 0.091 | 0.159 | 0.075 |
Cinnamic acid | 0.68 | 0.65 | 0.018 | 0.051 | 0.323 | 0.951 |
Essential oil | 0.72 | 0.70 | 0.014 | 0.110 | 0.931 | 0.832 |
Vitamin | 0.12 | 0.13 | 0.003 | 0.131 | 0.526 | 0.939 |
Color Characteristics | Drying Method | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fresh | Shade | Sun | Hot Air 40 °C | Hot Air 60 °C | Hot Air 80 °C | Hot Air 100 °C | Freeze | |||
L* | 30.56 a | 30.94 a | 28.59 b | 28.39 b | 25.03 c | 22.52 d | 17.64 e | 27.13 b | 0.308 | <0.001 |
a* | −6.34 b | −2.96 c | −2.82 c | −2.76 c | −1.36 d | −1.27 d | −1.10 d | −7.50 a | 0.049 | <0.001 |
b* | 15.09 a | 15.14 a | 14.26 b | 14.07 b | 13.98 b | 13.02 c | 13.00 c | 14.87 a | 0.118 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb. Separations 2021, 8, 152. https://doi.org/10.3390/separations8090152
Purba RAP, Paengkoum S, Paengkoum P. Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb. Separations. 2021; 8(9):152. https://doi.org/10.3390/separations8090152
Chicago/Turabian StylePurba, Rayudika Aprilia Patindra, Siwaporn Paengkoum, and Pramote Paengkoum. 2021. "Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb." Separations 8, no. 9: 152. https://doi.org/10.3390/separations8090152
APA StylePurba, R. A. P., Paengkoum, S., & Paengkoum, P. (2021). Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb. Separations, 8(9), 152. https://doi.org/10.3390/separations8090152