Developing a Fast Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for High-Throughput Surface Contamination Monitoring of 26 Antineoplastic Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instruments
2.3. Standard Solutions and Calibration Levels
2.4. Sample Preparation
2.5. PQRI
2.6. Experimental Design
2.7. Chromatography and Instrument Parameters
2.8. MS/MS Experiments
2.9. Performance Evaluation of LC–MS/MS Methods
3. Results
3.1. PQRI Comparison
3.2. Experimental Design
3.3. Chromatographic Conditions
3.4. Mass Spectrometry
3.5. Method Performance Evaluation
3.5.1. Calibration Curves
3.5.2. Matrix Effect
3.5.3. Accuracy and Precision
3.6. Real Sample Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chauchat, L.; Tanguay, C.; Caron, N.J.; Gagné, S.; Labrèche, F.; Bussières, J.F. Surface contamination with ten antineoplastic drugs in 83 Canadian centers. J. Oncol. Pharm. Pract. 2019, 25, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Agents Classified by the IARC Monographs; Volumes 1–129. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 25 August 2021).
- Guidance on the Application of the CLP Criteria, Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging (CLP) of Substances and Mixtures. July 2017. Available online: https://echa.europa.eu/documents/10162/23036412/clp_en.pdf/58b5dc6d-ac2a-4910-9702-e9e1f5051cc5 (accessed on 25 August 2021). [CrossRef]
- Connor, T.H.; MacKenzie, B.A.; DeBord, D.G.; Trout, D.B.; O’Callaghan, J.P. National Institute for Occupational Safety and Health List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings; US Department of Health and Human Services, Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2016.
- Directive 2004/37/EC of the European Parliament and of the Council of 29 April 2004 on the Protection of Workers from the Risks Related to Exposure to Carcinogens or Mutagens at Work (Sixth Individual Directive within the Meaning of Article 16(1) of Council Directive 89/391/EEC). 2004. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:229:0023:0034:EN:PDF (accessed on 25 July 2021).
- European BioSafety Network. Preventing Occupational Exposure to Cytotoxic and Other Hazardous Drugs European Policy Recommendations. 2016. Available online: https://www.europeanbiosafetynetwork.eu/wp-content/uploads/2016/05/Exposure-to-Cytotoxic-Drugs_Recommendation_DINA4_10-03-16.pdf (accessed on 25 July 2021).
- European BioSafety Network. 2019 Amendments to the Carcinogens and Mutagens Directive (CMD). Available online: https://www.europeanbiosafetynetwork.eu/wp-content/uploads/2019/03/Amendments-to-CMD3-and-implications.pdf (accessed on 25 July 2021).
- Lombardi, R.; Amari, P.; De Plato, F.; Falvo, C.; Jannitti, N.; Piredda, A. Gestione del Rischio di Esposizione del Personale Sanitario nella Manipolazione dei Farmaci Antineoplastici Iniettabili: Gli Aspetti di Prevenzione e la Caratterizzazione delle Misure di Sicurezza, Documento Italiano di Consenso. 2017. Available online: https://www.sifoweb.it/images/pdf/attivita/attivita-scientifica/aree_scientifiche/area_oncologica/CONSENSUS_DOCUMENT_FINALE.pdf (accessed on 25 July 2021).
- Yoshida, J.; Genshin, T.; Chie, M.; Yoshie, M.; Shigeki, K.; Shinji, K. Use of a Closed System Device to Reduce Occupational Contamination and Exposure to Antineoplastic Drugs in the Hospital Work Environment. Ann. Occup. Hyg. 2009, 53, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugheri, S.; Bonari, A.; Pompilio, I.; Boccalon, P.; Tognoni, D.; Cecchi, M.; Ughi, M.; Mucci, N.; Arcangeli, G. Analytical strategies for assessing occupational exposure to antineoplastic drugs in healthcare workplaces. Med. Pr. 2018, 69, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Palamini, M.; Dufour, A.; Therrien, R.; Delisle, J.-F.; Mercier, G.; Gagne, S.; Caron, N.; Bussieres, J.-F. Quantification of healthcare workers’ exposure to cyclophosphamide, ifosfamide, methotrexate, and 5-fluorouracil by 24-h urine assay: A descriptive pilot study. J. Oncol. Pharm. Pract. 2020, 26, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Molimard, M.; Sakr, D.; Lassalle, R.; Bignon, E.; Martinez, B.; Rouyer, M.; Mathoulin-Pelissier, S.; Baldi, I.; Verdun-Esquer, C.; et al. Nurses’ internal contamination by antineoplastic drugs in hospital centers: A cross-sectional descriptive study. Int. Arch. Occup. Environ. Health 2021, 1–12. [Google Scholar] [CrossRef]
- Dugheri, S.; Bonari, A.; Pompilio, I.; Gentili, M.; Montalti, M.; Mucci, N.; Arcangeli, G. A new automated gas chromatography/solid phase microextraction procedure for determining α-fluoro-β-alanine in urine. Malays. J. Anal. Sci. 2017, 21, 1091–1100. [Google Scholar] [CrossRef]
- Kibby, T. A review of surface wipe sampling compared to biologic monitoring for occupational exposure to antineoplastic drugs. J. Occup. Environ. Hyg. 2017, 14, 159–174. [Google Scholar] [CrossRef]
- Viegas, S.; Pádua, M.; Veiga, A.C.; Carolino, E.; Gomes, M. Antineoplastic drugs contamination of workplace surfaces in two Portuguese hospitals. Environ. Monit. Assess. 2014, 186, 7807–7818. [Google Scholar] [CrossRef] [Green Version]
- Jeronimo, M.; Colombo, M.; Astrakianakis, G.; Hon, C.-H. A surface wipe sampling and LC–MS/MS method for the simultaneous detection of six antineoplastic drugs commonly handled by healthcare workers. Anal. Bioanal. Chem. 2015, 407, 7083–7092. [Google Scholar] [CrossRef]
- Dugheri, S.; Bonari, A.; Pompilio, I.; Boccalon, P.; Mucci, N.; Arcangeli, G. A new approach to assessing occupational exposure to antineoplastic drugs in hospital environments. Arh. Hig. Rada Toksikol. 2018, 69, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Lee Walton, A.M.; Bush, M.A.; Douglas, C.E.; Allen, D.H.; Polovich, M.; Spasojevic, I. Surface Contamination With Antineoplastic Drugs on Two Inpatient Oncology Units. Oncol. Nurs. Soc. Forum 2020, 47, 263–273. [Google Scholar] [CrossRef]
- Chabut, C.; Bussières, J.-F. Characteristics of wipe sampling methods for antineoplastic drugs in North America: Comparison of six providers. Pharm. Technol. Hosp. Pharm. 2020, 5. [Google Scholar] [CrossRef]
- Mucci, N.; Dugheri, S.; Farioli, A.; Garzaro, G.; Rapisarda, V.; Campagna, M.; Bonari, A.; Arcangeli, G. Occupational exposure to antineoplastic drugs in hospital environments: Potential risk associated with contact with cyclophosphamide- and ifosfamide contaminated surfaces. Med. Pract. 2020, 71, 519–529. [Google Scholar] [CrossRef]
- Guichard, N.; Feketea, S.; Guillarmea, D.; Bonnabrya, P.; Fleury-Souverainb, S. Computer-assisted UHPLC–MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. J. Pharm. Biomed. Anal. 2019, 164, 395–401. [Google Scholar] [CrossRef]
- Waters Expands CORTECS Analytical Column Portfolio. Available online: https://www.businesswire.com/news/home/20161110005272/en/Waters-Expands-CORTECS-Analytical-Column-Portfolio (accessed on 25 July 2021).
- Waters Launches New Cortecs T3 and Cortecs Shield RP18 Columns. 2016. Available online: https://www.zenopa.com/news/801828550/waters-launches-new-cortecs-t3-and-cortecs-shield-rp18-columns (accessed on 25 July 2021).
- Berthelette, K.D.; Swann, T. Increased Retention of Polar Analytes Using CORTECS T3 Columns. Available online: https://www.waters.com/webassets/cms/library/docs/720005946en.pdf (accessed on 6 July 2021).
- Marrubini, G.; Dugheri, S.; Cappelli, G.; Arcangeli, G.; Mucci, N.; Appelblad, P.; Melzi, C.; Speltini, A. Experimental designs for solid-phase microextraction method development in bioanalysis: A review. Anal. Chim. Acta 2020, 1119, 77–100. [Google Scholar] [CrossRef] [PubMed]
- Column Selector. Available online: https://www.acdlabs.com/resources/freeware/colsel/ (accessed on 25 July 2021).
- USP Column Equivalency Application. Available online: https://apps.usp.org/app/USPNF/columnsDB.html (accessed on 25 July 2021).
- USP Database. Available online: https://apps.usp.org/app/USPNF/columnsDB.html (accessed on 25 July 2021).
- Haghedooren, E.; Diana, J.; Noszál, B.; Hoogmartens, J.; Adams, E. Classification of reversed-phase columns based on their selectivity towards vancomycin compounds. Talanta 2007, 71, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Visky, D.; Heyden, Y.V.; Iványi, T.; Baten, P.; De Beer, J.; Kovács, Z.; Noszál, B.; Roets, E.; Massart, D.L.; Hoogmartens, J. Characterisation of reversed-phase liquid chromatographic columns by chromatographic tests. Evaluation of 36 test parameters: Repeatability, reproducibility and correlation. J. Chromat. A 2002, 977, 39–58. [Google Scholar] [CrossRef]
- Iványi, T.; Heyden, Y.V.; Visky, D.; Baten, P.; De Beer, J.; Lázár, I.; Massart, D.L.; Roets, E.; Hoogmartens, J. Minimal number of chromatographic test parameters for the characterization of reversed-phase liquid chromatographic stationary phases. J. Chromat. A 2002, 954, 99–114. [Google Scholar] [CrossRef]
- Visky, D.; Heyden, Y.V.; Iványi, T.; Baten, P.; De Beer, J.; Kovács, Z.; Noszál, B.; Dehouck, P.; Roets, E.; Massart, D.L.; et al. Characterisation of reversed-phase liquid chromatographic columns by chromatographic tests: Rational column classification by a minimal number of column test parameters. J. Chromat. A 2003, 1012, 11–29. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- PQRI Approach for Selecting Columns of Equivalent Selectivity. Available online: https://www.usp.org/resources/pqri-approach-column-equiv-tool (accessed on 25 July 2021).
- Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 25 July 2021).
- Ying, H.; Hui, X.; Yaxiong, L.; Jiaming, G.; Quanhong, Y. Column selection approach for related substances determination of progesterone by high-performance liquid chromatography. Chem. Biol. Drug Des. 2019, 93, 29–37. [Google Scholar]
- C30 Series. Available online: https://develosil.us/product-category/c30-series/ (accessed on 25 July 2021).
- Dugheri, S.; Mucci, N.; Mini, E.; Squillaci, D.; Marrubini, G.; Bartolucci, G.; Bucaletti, E.; Cappelli, G.; Trevisani, L.; Arcangeli, G. Characterization and Separation of Platinum-Based Antineoplastic Drugs by Zwitterionic Hydrophilic Interaction Liquid Chromatography (HILIC)-Tandem Mass Spectrometry, and Its Application in Surface Wipe Sampling. Separations 2021, 8, 69. [Google Scholar] [CrossRef]
Experimental Plan | Experimental Matrix | |||
---|---|---|---|---|
Exp# | [HCOONH4] (mM) | HCOOH (%, v/v) | AMF | FA |
1 | 5 | 0.1 | 1 | 1 |
2 | 1 | 0.1 | −1 | 1 |
3 | 5 | 0.01 | 1 | −1 |
4 | 1 | 0.01 | −1 | −1 |
5 (V1) | 3 | 0.055 | 0 | 0 |
6 (V2) | 4 | 0.021 | 0.5 | −0.75 |
7 (V3) | 2 | 0.088 | −0.5 | 0.75 |
Time (min) | Conc B (%) |
---|---|
0.00 | 10 |
0.70 | 10 |
7.70 | 85 |
7.71 | 90 |
9.20 | 90 |
9.21 | 10 |
13.20 | 10 |
Compound | Precursor Ion Species | Precursor Ion (m/z) | Quantifier Ion (m/z) [CE (V)] | Qualifier Ion (m/z) [CE (V)] |
---|---|---|---|---|
Dacarbazine | [M + H]+ | 183.05 | 166.0 [−12] | 122.9 [−18] |
Methotrexate | [M + H]+ | 455.25 | 308.1 [−20] | 175.1 [−36] |
Busulfan | [M + NH4+ | 264.25 | 151.1 [−11] | 55.1 [−18] |
Mitomycin C | [M + H]+ | 335.20 | 241.95 [−15] | 131.2 [−47] |
Topotecan | [M + H]+ | 422.20 | 377.0 [−23] | 46.0 [−18] |
Pemetrexed | [M + H]+ | 428.20 | 281.1 [−20] | 163.0 [−34] |
Vindesine | [M + 2H]2+ | 377.60 | 355.2 [−19] | 271.7 [−25] |
Raltitrexed | [M + H]+ | 459.05 | 312.0 [−18] | 173.0 [−35] |
Ifosfamide | [M + H]+ | 261.05 | 153.9 [−22] | 91.9 [−23] |
Irinotecan | [M + H]+ | 587.30 | 502.0 [−33] | 124.0 [−38] |
Cyclophosphamide | [M + H]+ | 260.95 | 139.95 [−22] | 105.9 [−21] |
Vincristine | [M + 2H]2+ | 413.10 | 382.9 [−19] | 362.0 [−21] |
Vinblastine | [M + 2H]2+ | 406.10 | 346.1 [−22] | 271.6 [−27] |
Melphalan | [M + H]+ | 305.10 | 288.0 [−13] | 246.0 [−23] |
Doxorubicin | [M + H]+ | 544.20 | 397.1 [−14] | 361.1 [−29] |
Epirubicin | [M + H]+ | 544.20 | 397.0 [−15] | 360.9 [−29] |
Etoposide | [M + NH4]+ | 606.25 | 229.0 [−20] | 185.0 [−44] |
Vinorelbine | [M + 2H]2+ | 390.10 | 357.2 [−27] | 122.0 [−15] |
Fotemustine | [M + H]+ | 316.10 | 210.1 [−11] | 152.1 [−24] |
Daunorubicin | [M + H]+ | 528.10 | 381.1 [−12] | 321.1 [−28] |
Idarubicin | [M + H]+ | 498.10 | 350.9 [−11] | 291.1 [−34] |
Tamoxifen | [M + H]+ | 372.15 | 178.0 [−50] | 72.1 [−23] |
Docetaxel | [M + Na]+ | 830.35 | 549.0 [−27] | 304.05 [−24] |
Paclitaxel | [M + H]+ | 854.40 | 104.9 [−53] | 569.2 [−12] |
Thiotepa | [M + H]+ | 190.10 | 147.1 [−14] | 104.0 [−22] |
Bendamustine | [M + H]+ | 358.15 | 340.05 [−25] | 228.1 [−39] |
IS | [M + H]+ | 832.45 | 569.2 [−15] | 264.1 [−19] |
Interday | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | RT (min) | RT RSD | Width1/2 (min) | Width RSD | Tf | Tf RSD | Af | Af RSD | N (plates) | k |
Fotemustine | 4.233 | 0.2% | 0.057 | 1.9% | 1.2 | 7.3% | 1.3 | 9.4% | 30,272 | 13.6 |
Dacarbazine | 0.426 | 0.5% | 0.067 | 2.6% | 1.3 | 4.6% | 1.4 | 6.0% | 227 | 0.5 |
Busulfan | 2.110 | 0.1% | 0.105 | 1.6% | 1.3 | 2.0% | 1.3 | 4.7% | 2252 | 6.3 |
Methotrexate | 1.751 | 0.6% | 0.125 | 1.4% | 1.5 | 5.0% | 1.6 | 9.4% | 1094 | 5.0 |
Mitomycin C | 2.198 | 0.3% | 0.071 | 1.8% | 1.3 | 4.8% | 1.3 | 6.9% | 5333 | 6.6 |
Topotecan | 2.737 | 0.2% | 0.057 | 1.9% | 1.2 | 6.1% | 1.3 | 7.9% | 12,731 | 8.4 |
Pemetrexed | 2.641 | 0.2% | 0.062 | 1.5% | 1.6 | 3.6% | 1.8 | 4.7% | 10,015 | 8.1 |
Vindesine | 3.522 | 0.2% | 0.067 | 3.4% | 1.7 | 3.6% | 1.8 | 5.3% | 15,183 | 11.1 |
Raltitrexed | 3.199 | 0.2% | 0.058 | 0.8% | 1.4 | 3.5% | 1.5 | 5.2% | 16,621 | 10.0 |
Ifosfamide | 3.209 | 0.2% | 0.059 | 2.3% | 1.3 | 7.2% | 1.3 | 9.6% | 16,169 | 10.1 |
Cyclophosphamide | 3.333 | 0.2% | 0.059 | 2.2% | 1.3 | 6.8% | 1.4 | 9.6% | 17,791 | 10.5 |
Irinotecan | 3.772 | 0.2% | 0.058 | 2.2% | 1.3 | 6.7% | 1.4 | 8.8% | 23,603 | 12.0 |
Melphalan | 3.609 | 0.2% | 0.058 | 2.2% | 1.3 | 5.9% | 1.3 | 8.2% | 21,621 | 11.4 |
Vincristine | 4.271 | 0.3% | 0.071 | 5.4% | 1.6 | 7.2% | 1.8 | 10.1% | 20,394 | 13.7 |
Vinblastine | 4.370 | 0.3% | 0.072 | 3.1% | 1.7 | 5.8% | 2.1 | 9.3% | 20,340 | 14.1 |
Doxorubicin | 3.963 | 0.3% | 0.057 | 2.3% | - | - | - | - | 26,623 | 12.7 |
Etoposide | 4.036 | 0.2% | 0.057 | 2.3% | 1.2 | 6.9% | 1.4 | 9.2% | 27,402 | 12.9 |
Epirubicin | 4.012 | 1.7% | 0.058 | 2.6% | - | - | - | - | 27,008 | 13.0 |
Vinorelbine | 4.787 | 0.2% | 0.081 | 3.8% | 2.4 | 7.6% | 2.9 | 5.7% | 19,214 | 15.5 |
Daunorubicin | 4.450 | 0.2% | 0.057 | 2.3% | 1.3 | 6.4% | 1.4 | 9.6% | 33,573 | 14.3 |
Idarubicin | 4.653 | 0.2% | 0.058 | 2.1% | 1.2 | 7.6% | 1.3 | 10.6% | 36,225 | 15.0 |
Tamoxifen | 6.278 | 0.2% | 0.062 | 2.1% | 1.3 | 3.7% | 1.4 | 4.5% | 56,300 | 20.6 |
Docetaxel | 6.025 | 0.2% | 0.057 | 2.5% | 1.1 | 4.9% | 1.2 | 8.5% | 62,404 | 19.8 |
Paclitaxel | 6.115 | 0.2% | 0.058 | 1.7% | 1.3 | 6.5% | 1.3 | 8.9% | 62,072 | 20.1 |
Thiotepa | 2.427 | 0.2% | 0.064 | 1.9% | 1.3 | 6.9% | 1.4 | 9.5% | 7974 | 7.4 |
Bendamustine | 4.013 | 0.2% | 0.058 | 1.9% | 1.3 | 6.2% | 1.4 | 8.6% | 26,434 | 12.8 |
IS | 5.974 | 0.2% | 0.058 | 2.0% | 1.2 | 8.1% | 1.4 | 11.5% | 59,268 | 19.6 |
Intraday | ||||||||||
Fotemustine | 4.232 | 0.1% | 0.058 | 1.5% | 1.3 | 1.4% | 1.4 | 2.1% | 29,464 | 13.6 |
Dacarbazine | 0.425 | 0.2% | 0.068 | 1.0% | 1.3 | 1.1% | 1.5 | 1.2% | 217 | 0.5 |
Busulfan | 2.114 | 0.2% | 0.106 | 6.0% | 1.3 | 4.5% | 1.3 | 7.5% | 2200 | 6.3 |
Methotrexate | 1.761 | 0.3% | 0.126 | 1.4% | 1.6 | 1.7% | 1.8 | 2.8% | 1075 | 5.1 |
Mitomycin C | 2.200 | 0.1% | 0.072 | 1.2% | 1.3 | 1.2% | 1.4 | 1.9% | 5207 | 6.6 |
Topotecan | 2.736 | 0.1% | 0.058 | 2.0% | 1.3 | 1.9% | 1.4 | 2.3% | 12,337 | 8.4 |
Pemetrexed | 2.642 | 0.1% | 0.063 | 3.4% | 1.6 | 5.3% | 1.8 | 4.4% | 9886 | 8.1 |
Vindesine | 3.521 | 0.1% | 0.067 | 5.1% | 1.7 | 6.6% | 2.0 | 8.0% | 15,222 | 11.1 |
Raltitrexed | 3.199 | 0.1% | 0.059 | 2.0% | 1.4 | 1.5% | 1.5 | 3.1% | 16,377 | 10.0 |
Ifosfamide | 3.209 | 0.1% | 0.061 | 1.4% | 1.3 | 1.2% | 1.4 | 1.8% | 15,449 | 10.1 |
Cyclophosphamide | 3.333 | 0.1% | 0.060 | 1.6% | 1.3 | 1.2% | 1.4 | 2.1% | 17,063 | 10.5 |
Irinotecan | 3.770 | 0.1% | 0.059 | 2.1% | 1.3 | 1.6% | 1.5 | 3.3% | 22,729 | 12.0 |
Melphalan | 3.608 | 0.1% | 0.058 | 2.3% | 1.3 | 6.7% | 1.4 | 8.0% | 21,136 | 11.4 |
Vincristine | 4.268 | 0.1% | 0.070 | 3.6% | 1.6 | 12.0% | 1.9 | 11.6% | 20,761 | 13.7 |
Vinblastine | 4.369 | 0.1% | 0.073 | 9.7% | 1.8 | 18.6% | 2.2 | 16.4% | 19,973 | 14.1 |
Doxorubicin | 3.960 | 0.1% | 0.058 | 2.7% | - | - | - | - | 25,740 | 12.7 |
Etoposide | 4.035 | 0.1% | 0.058 | 1.7% | 1.3 | 1.6% | 1.4 | 2.6% | 26,389 | 12.9 |
Epirubicin | 3.962 | 0.4% | 0.058 | 2.4% | - | - | - | - | 26,096 | 12.7 |
Vinorelbine | 4.784 | 0.1% | 0.083 | 4.9% | 2.3 | 6.7% | 2.9 | 6.9% | 18,387 | 15.5 |
Daunorubicin | 4.447 | 0.1% | 0.058 | 3.3% | 1.3 | 5.7% | 1.5 | 7.1% | 32,322 | 14.3 |
Idarubicin | 4.650 | 0.1% | 0.058 | 4.1% | 1.3 | 8.4% | 1.5 | 11.9% | 35,238 | 15.0 |
Tamoxifen | 6.276 | 0.1% | 0.063 | 1.9% | 1.3 | 3.1% | 1.4 | 4.1% | 55,655 | 20.6 |
Docetaxel | 6.022 | 0.1% | 0.058 | 10.6% | 1.2 | 12.7% | 1.2 | 16.5% | 60,335 | 19.8 |
Paclitaxel | 6.111 | 0.1% | 0.059 | 2.8% | 1.3 | 4.7% | 1.4 | 6.7% | 60,199 | 20.1 |
Thiotepa | 2.429 | 0.1% | 0.065 | 1.7% | 1.4 | 2.0% | 1.5 | 2.8% | 7709 | 7.4 |
Bendamustine | 4.012 | 0.1% | 0.059 | 1.5% | 1.3 | 0.8% | 1.5 | 2.1% | 25,574 | 12.8 |
IS | 5.970 | 0.1% | 0.059 | 3.5% | 1.3 | 4.8% | 1.5 | 8.2% | 57,622 | 19.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugheri, S.; Mucci, N.; Squillaci, D.; Marrubini, G.; Bartolucci, G.; Melzi, C.; Bucaletti, E.; Cappelli, G.; Trevisani, L.; Arcangeli, G. Developing a Fast Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for High-Throughput Surface Contamination Monitoring of 26 Antineoplastic Drugs. Separations 2021, 8, 150. https://doi.org/10.3390/separations8090150
Dugheri S, Mucci N, Squillaci D, Marrubini G, Bartolucci G, Melzi C, Bucaletti E, Cappelli G, Trevisani L, Arcangeli G. Developing a Fast Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for High-Throughput Surface Contamination Monitoring of 26 Antineoplastic Drugs. Separations. 2021; 8(9):150. https://doi.org/10.3390/separations8090150
Chicago/Turabian StyleDugheri, Stefano, Nicola Mucci, Donato Squillaci, Giorgio Marrubini, Gianluca Bartolucci, Camillo Melzi, Elisabetta Bucaletti, Giovanni Cappelli, Lucia Trevisani, and Giulio Arcangeli. 2021. "Developing a Fast Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for High-Throughput Surface Contamination Monitoring of 26 Antineoplastic Drugs" Separations 8, no. 9: 150. https://doi.org/10.3390/separations8090150
APA StyleDugheri, S., Mucci, N., Squillaci, D., Marrubini, G., Bartolucci, G., Melzi, C., Bucaletti, E., Cappelli, G., Trevisani, L., & Arcangeli, G. (2021). Developing a Fast Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for High-Throughput Surface Contamination Monitoring of 26 Antineoplastic Drugs. Separations, 8(9), 150. https://doi.org/10.3390/separations8090150