HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Instrumentation and Methods
2.3. Samples and Sample Treatment
2.4. Data Analysis
3. Results and Discussion
3.1. HPLC Conditions
3.2. Instrumental Quality Parameters
3.3. Exploratory Analysis by PCA
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Solomons, N.W. Evolutionary Aspects of Nutrition and Health: Diet, Exercise, Genetics and Chronic Disease, volume 84 of World Review of Nutrition and Dietetics edited by Artemis P. Simopoulos. Am. J. Clin. Nutr. 2000, 71, 854–855. [Google Scholar]
- Simopoulos, A.P. The mediterranean diets: What is so special about the diet of Greece? The scientific evidence. J. Nutr. 2001, 131, 3065S–3073S. [Google Scholar] [PubMed]
- Stradling, C.; Hamid, M.; Fisher, K.; Taheri, S.; Thomas, G.N. A review of dietary influences on cardiovascular health: Part 1: The role of dietary nutrients. Cardiovasc. Hematol. Disord. Drug Targets 2013, 13, 208–230. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Mediterranean diet. United Nation Educational, Scientific and Cultural Organization (UNESCO). Available online: http://www.unesco.org/culture/ich/en/RL/mediterranean-diet-00884 (accessed on 15 October 2016).
- Helsing, E. Trends in fat consumption in Europe and their influence on the Mediterranean diet. Eur. J. Clin. Nutr. 1993, 47 (Suppl. 1), S4–S12. [Google Scholar] [PubMed]
- European Union Commission. Council Regulation (EC) No. 1513/2001 of 23 July 2001 amending Regulations No. 136/66/EEC and (EC) No. 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil. Off. J. Eur. Communities 2001, L201, 4–7. [Google Scholar]
- Rafehi, H.; Ververis, K.; Karagiannis, T.C. Mechanisms of Action of Phenolic Compounds in Olive. J. Diet. Suppl. 2012, 9, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Fedeli, E. Lipids of olives. Prog. Chem. Fats Other Lipids 1977, 15, 57–74. [Google Scholar] [CrossRef]
- Rossell, J.B. Frying: Improving Quality; Woodhead Publishing Limited, CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Visioli, F.; Galli, C. Olive Oil Phenols and Their Potential Effects on Human Health. J. Agric. Food Chem. 1998, 46, 4292–4296. [Google Scholar] [CrossRef]
- Bester, D.; Esterhuyse, A.J.; Truter, E.J.; van Rooyen, J. Cardiovascular effects of edible oils: A comparison between four popular edible oils. Nutr. Res. Rev. 2010, 23, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Waterman, E.; Lockwood, B. Active components and clinical applications of olive oil. Altern. Med. Rev. 2007, 12, 331–342. [Google Scholar] [PubMed]
- Caponio, F.; Alloggio, V.; Gomes, T. Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chem. 1999, 64, 203–209. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Koutsaftakis, A. The effect of different processing stages of olive fruit on the extracted olive oil polyphenol content. Grasas Aceites 2002, 53, 304–308. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Evolution of oil accumulation and polyphenol content in fruits of olive tree (Olea europaea L.) related to different irrigation strategies. Acta Hortic. 2002, 586, 345–348. [Google Scholar] [CrossRef]
- Saurina, J.; Sentellas, S. Determination of Phenolic Compounds in Food Matrices: Applications to Characterization and Authentication. In Fast Liquid Chromatography-Mass Spectrometry Methods in Food and Environmental Analysis; Núñez, O., Gallart-Ayala, H., Martins, C.P.B., Lucci, P., Eds.; Imperial College Press: London, UK, 2015; pp. 517–547. [Google Scholar]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Gallina-Toschi, T.; Fernandez-Gutierrez, A. Analytical determination of polyphenols in olive oils. J. Sep. Sci. 2005, 28, 837–858. [Google Scholar] [CrossRef] [PubMed]
- Segura-Carretero, A.; Carrasco-Pancorbo, A.; Bendini, A.; Cerretani, L.; Fernandez-Gutierrez, A. Analytical determination of polyphenols in olive oil. Olives Olive Oil Health Dis. Prev. 2010, 509–523. [Google Scholar]
- Gosetti, F.; Bolfi, B.; Manfredi, M.; Calabrese, G.; Marengo, E. Determination of eight polyphenols and pantothenic acid in extra-virgin olive oil samples by a simple, fast, high-throughput and sensitive ultrahigh performance liquid chromatography with tandem mass spectrometry method. J. Sep. Sci. 2015, 38, 3130–3136. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Codony, R.; Pizzale, L.; Mariani, C.; Conte, L. Evaluation of total hydroxytyrosol and tyrosol in extra virgin olive oils. Eur. J. Lipid Sci. Technol. 2014, 116, 805–811. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Machado, J.; Gomes, S.; Lopes, J.; Martins-Lopes, P.; Barros, A.I.R.N. Phenolic composition and antioxidant activity of monovarietal and commercial Portuguese olive oils. J. Am. Oil Chem. Soc. 2014, 91, 1197–1203. [Google Scholar] [CrossRef]
- De la Torre-Robles, A.; Rivas, A.; Lorenzo-Tovar, M.L.; Monteagudo, C.; Mariscal-Arcas, M.; Olea-Serrano, F. Estimation of the intake of phenol compounds from virgin olive oil of a population from southern Spain. Food Addit. Contam. A 2014, 31, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Lagana, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QTOF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, F.; Ventrella, A.; Casiello, G.; Sacco, D.; Tasioula-Margari, M.; Kiritsakis, A.K.; Kontominas, M.G. Characterisation of the geographical origin of Western Greek virgin olive oils based on instrumental and multivariate statistical analysis. Food Chem. 2012, 133, 169–175. [Google Scholar] [CrossRef]
- Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Ozcelik, B.; Frank, J.; Rimbach, G. Comprehensive Analysis of Polyphenols in 55 Extra Virgin Olive Oils by HPLC-ECD and Their Correlation with Antioxidant Activities. Plant Foods Hum. Nutr. 2012, 67, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Dais, P.; Boskou, P. Detection and quantification of phenolic compounds in olive oil, olives, and biological fluids. Olive Oil 2009, 55–107. [Google Scholar]
- Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Zurek, G.; Behrens, M.; Baessmann, C.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Nano and rapid resolution liquid chromatography-electrospray ionization-time of flight mass spectrometry to identify and quantify phenolic compounds in olive oil. J. Sep. Sci. 2010, 33, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Bonoli, M.; Montanucci, M.; Toschi, T.G.; Lercker, G. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. J. Chromatogr. A 2003, 1011, 163–172. [Google Scholar] [CrossRef]
- Bonoli, M.; Toschi, T.G.; Lercker, G. Analysis and quantification of phenolic compounds in vegetable extracts by high-performance capillary electrophoresis (HPCE). Prog. Nutr. 2005, 7, 31–35. [Google Scholar]
- Beltran, G.; Jimenez, A.; Aguilera, M.P.; Uceda, M. HPLC analysis of the phenolic fraction of Arbequina virgin olive oil. Relations to the bitterness index K225 and oil stability. Grasas Aceites 2000, 51, 320–324. [Google Scholar] [CrossRef]
- Marini, F.; D’Aloise, A.; Bucci, R.; Buiarelli, F.; Magri, A.L.; Magri, A.D. Fast analysis of 4 phenolic acids in olive oil by HPLC-DAD and chemometrics. Chemom. Intell. Lab. Syst. 2011, 106, 142–149. [Google Scholar] [CrossRef]
- Lozano-Sanchez, J.; Segura-Carretero, A.; Menendez, J.A.; Oliveras-Ferraros, C.; Cerretani, L.; Gutierrez, A. Prediction of Extra Virgin Olive Oil Varieties through Their Phenolic Profile. Potential Cytotoxic Activity against Human Breast Cancer Cells. J. Agric. Food Chem. 2010, 58, 9942–9955. [Google Scholar] [CrossRef] [PubMed]
- Alarcon Flores, M.I.; Romero-Gonzalez, R.; Garrido Frenich, A.; Martinez Vidal, J.L. Analysis of phenolic compounds in olive oil by solid-phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Chem. 2012, 134, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Rosales, F.; Rios, J.J.; Gomez-Rey, M.L. Main polyphenols in the bitter taste of virgin olive oil. Structural confirmation by on-line high-performance liquid chromatography electrospray ionization mass spectrometry. J. Agric. Food Chem. 2003, 51, 6021–6025. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Nevedomskaya, E.; Mayboroda, O.A.; Deelder, A.M.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: Understanding the metabolism of polyphenols. Anal. Bioanal. Chem. 2010, 398, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Eigenvector Research Incorporated. Powerful Resources for Intelligent Data Analysis. Available online: http://www.eigenvector.com/software/solo.htm (accessed on 15 October 2016).
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; de Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Pérez-Rafols, C.; Saurina, J. Liquid chromatographic fingerprints and profiles of polyphenolic compounds applied to the chemometric characterization and classification of beers. Anal. Methods 2015, 7, 8733–8739. [Google Scholar] [CrossRef]
Peak | Compound | Family | Structure | CAS Number |
---|---|---|---|---|
1 | Homogentisic acid | Phenolic acid | 451-13-8 | |
2 | (+)-Catechin hydrate | Flavanol | 225937-10-0 | |
3 | Tyrosol | Phenolic alcohol | 501-91-0 | |
4 | 4-Hydroxybenzoic acid | Phenolic acid | 99-96-7 | |
5 | Caffeic acid | Phenolic acid | 331-39-5 | |
6 | Syringic acid | Phenolic acid | 530-57-4 | |
7 | Vanillin | Phenolic aldehyde | 121-33-5 | |
8 | Syringaldehyde | Phenolic aldehyde | 134-96-3 | |
9 | p-Coumaric acid | Phenolic acid | 501-98-4 | |
10 | Sinapic acid | Phenolic acid | 530-59-6 | |
11 | Ferulic acid | Phenolic acid | 537-98-4 | |
12 | Veratric acid | Benzoic acid | 93-07-2 | |
13 | Kaempferol | Flavonol | 520-18-3 | |
14 | Rosmanol | Phenolic diterpene | 80225-53-2 |
Compound | LOD (mg/L) | LOQ (mg/L) | Linearity (r2) | Run-to-Run Precision (RSD%, n = 5) | Day-to-Day Precision (RSD%, n = 5 × 3) | Trueness (n = 5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
tr | Concentration | tr | Concentration | Conc. value (mg/L) | Calc. value (mg/L) | Error (%) | ||||||
1) Homogentisic acid | 2.6 | 8.7 | 0.987 | 0.12 | 2.9 | 0.32 | 4.3 | 4.3 | 29.3 | 4.5 | ||
2) (+)-catechin hydrate | 3.5 | 11.6 | 0.995 | 0.05 | 1.1 | 0.16 | 10.1 | 10.1 | 31.9 | 2.3 | ||
3) Tyrosol | 3.3 | 11.0 | 0.986 | 0.05 | 2.0 | 0.15 | 7.3 | 7.3 | 35.1 | 6.8 | ||
4) 4-hydroxybenzoic acid | 0.23 | 0.8 | 0.995 | 0.06 | 1.0 | 0.23 | 6.9 | 6.9 | 32.6 | 0.4 | ||
5) Caffeic acid | 0.5 | 1.5 | 0.992 | 0.07 | 0.6 | 0.23 | 4.2 | 4.2 | 41.0 | 6.7 | ||
6) Syringic acid | 0.5 | 1.7 | 0.996 | 0.05 | 0.7 | 0.20 | 6.6 | 6.6 | 33.2 | 3.9 | ||
7) Vanillin | 0.6 | 1.9 | 0.995 | 0.04 | 0.6 | 0.14 | 7.7 | 7.7 | 31.1 | 2.8 | ||
8) Syringaldehyd | 0.9 | 3.2 | 0.988 | 0.04 | 1.0 | 0.13 | 4.8 | 4.8 | 33.4 | 2.8 | ||
9) p-coumaric acid | 0.08 | 0.25 | 0.997 | 0.04 | 0.8 | 0.12 | 3.0 | 3.0 | 33.4 | 0.9 | ||
10) Sinapic acid | 0.15 | 0.5 | 0.995 | 0.04 | 0.6 | 0.11 | 5.7 | 5.7 | 33.1 | 2.4 | ||
11) Ferulic acid | 0.08 | 0.27 | 0.999 | 0.04 | 0.6 | 0.11 | 11.5 | 11.5 | 32.6 | 3.2 | ||
12) Veratric acid | 0.15 | 0.5 | 0.987 | 0.04 | 0.7 | 0.10 | 8.6 | 8.6 | 32.5 | 0.3 | ||
13) Kaempferol | 1.4 | 4.8 | 0.991 | 0.02 | 0.9 | 0.06 | 6.6 | 6.6 | 33.9 | 2.1 | ||
14) Rosmanol | 11.5 | 38.4 | 0.999 | 0.02 | 2.1 | 0.06 | 3.6 | 3.6 | 39.1 | 1.7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. https://doi.org/10.3390/separations3040033
Farrés-Cebrián M, Seró R, Saurina J, Núñez O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations. 2016; 3(4):33. https://doi.org/10.3390/separations3040033
Chicago/Turabian StyleFarrés-Cebrián, Mireia, Raquel Seró, Javier Saurina, and Oscar Núñez. 2016. "HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis" Separations 3, no. 4: 33. https://doi.org/10.3390/separations3040033
APA StyleFarrés-Cebrián, M., Seró, R., Saurina, J., & Núñez, O. (2016). HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations, 3(4), 33. https://doi.org/10.3390/separations3040033