Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
Abstract
1. Introduction
2. EMR Properties
2.1. Production
2.2. Physicochemical Properties
2.3. Leaching Risk
3. EMR Harmless Process
3.1. Chemical Method
3.1.1. Chemical Precipitation
3.1.2. Chemical Leaching
3.2. Physical Chemistry Method
3.2.1. Curing
3.2.2. High-Temperature Method
3.3. Electrochemical Method
3.4. Biological Method
3.5. Comprehensive Method
4. Comprehensive Utilization of EMR
4.1. Building Materials
4.1.1. Cement and Concrete Additives
4.1.2. Wall Materials
4.1.3. Synergistic Preparation of Cementitious Materials
4.2. Recovery of Valuable Elements
4.3. Manganese Fertilizer
4.4. Glass–Ceramic
4.5. Roadbed Materials
4.6. Adsorption Material
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Yang, Y.; Chen, F.; Ye, Q.; Liao, Y.; Han, Y. Research Progress on the Harmless Utilization and Resource Recovery of Electrolytic Manganese Residue. China Manganese Ind. 2023, 41, 4–9. [Google Scholar]
- Wu, S.; Wang, J.; Liu, L.; Wang, H.; Zhao, P. Review on Comprehensive Utilization of Electrolytic Manganese Residue. Inorg. Chem. Ind. 2016, 48, 22–25. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Liu, X.; Fu, L.; Zhu, J. Manganese residue micropowder—Research on the mechanical properties of stone powder mortar. Green Environ. Prot. Build. Mater. 2020, 10, 1–3. [Google Scholar]
- Dong, X. Discussion on the Development of Manganese Industry in Guizhou Province. China Manganese Ind. 2021, 39, 1–4. [Google Scholar]
- Lin, J.; Zhang, B. The influence law of manganese residue content on the performance of high-strength concrete and the optimal ratio test. China Manganese Ind. 2020, 38, 39–44. [Google Scholar]
- Mu, W.; Zhou, X.; Huang, J.; He, S.; Luo, Z.; Ma, Y.; Wang, L.; Shao, Z. Research Status and Prospects of Mn and NH3-N Solidification/Stabilization Treatment in Electrolytic Manganese Residue. Mod. Chem. Ind. 2020, 40, 17–21. [Google Scholar]
- Tang, X.; Li, H.; Hu, Y.; Li, Q.; He, F.; Liu, Z.; Chu, J. Research Progress on the Resource Recovery and Utilization of Electrolytic Manganese Residue and Assessment of the Impact of “Carbon Neutrality”. Nonferrous Met. Extr. Metall. 2024, 11, 177–186. [Google Scholar]
- Liu, P.; Zheng, K.; Su, X.; Huang, F.; Li, J.; Chen, X.; Dong, X. The Current Situation and Prospects of Resource Utilization of Electrolytic Manganese Residue. Liaoning Chem. Ind. 2022, 51, 235–238. [Google Scholar]
- Sun, Y.; Li, J.; Su, X.; Chen, X.; Huang, F.; Dong, X.; Zheng, K. Research Progress on the Properties of Electrolytic Manganese Residue and Prospects for Its Resource Utilization. Shandong Chem. Ind. 2022, 51, 102–105. [Google Scholar]
- Xu, J. Research Progress on Inertial Treatment Technology and Resource Utilization of Electrolytic Manganese Residue. China Manganese Ind. 2020, 38, 1–6. [Google Scholar]
- He, S.; Yang, B.; Luo, Z.; Cai, L. Study on the Physical and Chemical Properties of Electrolytic Manganese Residue. Technol. Dev. Chem. Ind. 2022, 51, 41–46. [Google Scholar]
- Fu, Y.; Qiao, H.; Feng, Q.; Chen, K.; Li, Y.; Xue, C.; Zhang, Y. Review of new methods for resource utilisation of electrolytic manganese residue and its application in building materials. Constr. Build. Mater. 2023, 401, 132901. [Google Scholar] [CrossRef]
- Tian, Y.; Shu, J.; Chen, M.; Wang, J.; Wang, Y.; Luo, Z.; Wang, R.; Yang, F.; Xiu, F.; Sun, Z. Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching. J. Clean. Prod. 2019, 236, 117708. [Google Scholar] [CrossRef]
- Shu, J.; Cai, L.; Zhao, J.; Feng, H.; Chen, M.; Zhang, X.; Wu, H.; Yang, Y.; Liu, R. A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue. Ecotoxicol. Environ. Saf. 2020, 205, 111317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z. Research Progress on Resource Utilization of Electrolytic Manganese Dioxide Sludge. China Manganese Ind. 2015, 33, 1–3. [Google Scholar]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Du, J.; Tao, C. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J. Hazard. Mater. 2016, 317, 267–274. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Ke, X.; Jiao, X.; Li, R.; Shi, C. Geopolymer synthesized from electrolytic manganese residue and lead-zinc smelting slag: Compressive strength and heavy metal immobilization. Cem. Concr. Compos. 2022, 134, 104806. [Google Scholar] [CrossRef]
- Shen, Z.; He, Z.; Tang, L.; Kong, L.; Wang, X.; Chen, K. Research on the Performance and Mechanism of Cement Solidified Electrolytic Manganese Slag. Appl. Chem. Ind. 2022, 51, 2933–2938+41. [Google Scholar]
- Che, L.; Yuan, C.; Lei, M.; Wang, Y.; Pan, Y.; Long, S. Characterization of Electrolytic Manganese Sludge and Removal of Manganese Ions from Manganese-Containing Wastewater. Technol. Water Treat. 2017, 7, 76–80+88. [Google Scholar]
- He, S.; Wilson, B.P.; Lundström, M.; Liu, Z. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process. J. Hazard. Mater. 2021, 402, 123561. [Google Scholar] [CrossRef]
- Su, H.; Zhou, W.; Han, Y.; Li, Y. Remediation treatment and resource utilization trends of electrolytic manganese residue. Miner. Eng. 2023, 202, 108264. [Google Scholar] [CrossRef]
- Zhang, L. Research on the Properties of Manganese Sludge and Its Harmless Treatment. Master’s Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Zheng, K.; Lu, F.; Li, J.; Dong, X.; Su, X. The Current Situation and Prospects of Resource Utilization of Electrolytic Manganese Slag. Chem. Eng. Des. Commun. 2020, 46, 138–139+58. [Google Scholar]
- Tadesse, S. Removal of Basic Dye from Aqueous Medium Using Activated Carbon from Erythrina Brucei, Arundinaria Alpina and Manihot Esculenta. Food Sci. Qual. Manag. 2019, 86, 19–27. [Google Scholar]
- Wang, J. Research and Application of Inert Treatment Technology for Electrolytic Manganese Slag. Master’s Thesis, Qingdao University, Qingdao, China, 2012. [Google Scholar]
- Zhu, D.; Cheng, R.; Liu, J.; Liu, W. Study on the Relationship between Soil Acidification and Manganese Toxicity in Rapeseed Plants. Ecol. Environ. Sci. 1998, 4, 280–283. [Google Scholar]
- Zhou, C.; Yu, X.; Zhou, S. The Urgency and Suggestions for Implementing Clean Production in the Electrolytic Manganese Metal Industry. China Manganese Ind. 2006, 3, 15–18. [Google Scholar]
- GB 8978-1996; Integrated Wastewater Discharge Standard. State Environmental Protection Administration (China), National Standard of the People’s Republic of China: Beijing, China, 1996.
- Shu, J.; Wu, H.; Liu, R.; Liu, Z.; Li, B.; Chen, M.; Tao, C. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource. Ecotoxicol. Environ. Saf. 2018, 148, 220–227. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Zhang, Q.; Li, L. Process conditions and kinetic analysis of the acid method for reducing and leaching manganese and iron from manganese-containing electrolytic slag. Bull. Chin. Ceram. Soc. 2017, 36, 2844–2849. [Google Scholar]
- Ghafarizadeh, B.; Rashchi, F.; Vahidi, E. Recovery of manganese from electric arc furnace dust of ferromanganese production units by reductive leaching. Miner. Eng. 2011, 24, 174–176. [Google Scholar] [CrossRef]
- Panias, D.; Taxiarchou, M.; Paspaliaris, I.; Kontopoulos, A. Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 1996, 42, 257–265. [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J.; Zhang, Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem. 2015, 23, 344–352. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, H.; Xie, H. Electrolytic manganese slag alkali leaching process for silicon extraction and kinetics study. Min. Metall. Eng. 2018, 38, 83–87. [Google Scholar]
- Li, X.; Li, X.; Yang, J.; Cao, Z.; Li, C.; Xue, J.; Ma, X.; Wang, S. Highly efficient Mn2+, Mg2+, and NH4+ recovery from electrolytic manganese residue via leaching, solvent extraction, coprecipitation, and atmospheric oxidation. J. Hazard. Mater. 2024, 472, 134430. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Li, J.; Sun, P.; Ma, M.; Wen, J. Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. J. Clean. Prod. 2019, 228, 901–909. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, X.; Xue, X. Investigation on Experimental Conditions for Acid Digestion of Electrolytic Manganese Sludge. Bull. Chin. Ceram. Soc. 2018, 37, 2326–2330. [Google Scholar]
- Wu, Y.; Li, J. Recovery and comprehensive utilization of electrolytic manganese slag resources. Shandong Chem. Ind. 2020, 49, 252–253. [Google Scholar]
- Shu, J.; Li, B.; Chen, M.; Sun, D.; Wei, L.; Wang, Y.; Wang, J. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere 2020, 253, 126896. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, J.; Wang, N. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia. Korean J. Chem. Eng. 2013, 30, 2037–2042. [Google Scholar] [CrossRef]
- Pan, J.; Xie, N.; Ming, X.; Wang, Y.; Li, H. Research on the stabilization treatment of soluble manganese ions in manganese ore leaching residues. J. Guangxi Univ. Nat. Sci. Ed. 2015, 40, 551–557. [Google Scholar]
- Zhang, C.; Wang, S.; Zhong, H.; Qin, L. Research Progress on Inertial Treatment and Resource Utilization Technology for Electrolytic Manganese Slag. Conserv. Util. Miner. Resour. 2019, 39, 111–118. [Google Scholar]
- Wang, C.-Q.; Xiong, D.-M.; Zhang, M.-T.; Wu, K. Characteristic contaminant removal purification and high value ecological utilization technology of calcination modified manganese residue. Sep. Purif. Technol. 2021, 278, 119602. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.; Han, Y.; Li, Y. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology. Miner. Eng. 2020, 152, 106359. [Google Scholar] [CrossRef]
- Sun, D.; Yang, L.; Liu, N. Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese. Chin. J. Chem. Eng. 2020, 28, 864–870. [Google Scholar] [CrossRef]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Tao, C. Enhanced extraction of manganese from electrolytic manganese residue by electrochemical. J. Electroanal. Chem. 2016, 780, 32–37. [Google Scholar] [CrossRef]
- Shu, J.; Sun, X.; Liu, R.; Liu, Z.; Wu, H.; Chen, M.; Li, B. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicol. Environ. Saf. 2019, 171, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Lin, F.; Chen, M.; Li, B.; Wei, L.; Wang, J.; Luo, Z.; Wang, R. An innovative method to enhance manganese and ammonia nitrogen leaching from electrolytic manganese residue by surfactant and anode iron plate. Hydrometallurgy 2020, 193, 105311. [Google Scholar] [CrossRef]
- Jiang, J.; Jin, H.; Wang, X.; Dai, X. A review of research progress on treatment and disposal technology for electrolytic manganese residue. Sep. Purif. Technol. 2025, 373, 133498. [Google Scholar] [CrossRef]
- Liu, R.; Wang, H.; Liu, Z.; Tao, C. Electrokinetic remediation with solar powered for electrolytic manganese residue and researching on migration of ammonia nitrogen and manganese. J. Water Process Eng. 2020, 38, 101655. [Google Scholar] [CrossRef]
- Suanon, F.; Tang, L.; Sheng, H.; Fu, Y.; Xiang, L.; Herzberger, A.; Jiang, X.; Mama, D.; Wang, F. TW80 and GLDA-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: Does it worth? Chem. Eng. J. 2020, 385, 123934. [Google Scholar] [CrossRef]
- Duan, N.; Zhou, C.; Chen, B.; Jiang, W.; Xin, B. Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism. J. Chem. Technol. Biotechnol. 2011, 86, 832–837. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, L.; Duan, N. The leaching toxicity of electrolytic manganese waste residue and the lime-based solidification technology. J. Environ. Eng. 2017, 35, 139–143. [Google Scholar]
- Lan, J.; Sun, Y.; Guo, L.; Li, Z.; Du, D.; Zhang, T.-C. A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching. J. Clean. Prod. 2019, 223, 499–507. [Google Scholar] [CrossRef]
- Xin, B.; Chen, B.; Duan, N.; Zhou, C. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresour. Technol. 2011, 102, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Sun, P.; Ma, M.; Zhang, T.-C. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures. Chemosphere 2020, 256, 127043. [Google Scholar] [CrossRef]
- Lan, J.; Dong, Y.; Xiang, Y.; Zhang, S.; Mei, T.; Hou, H. Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics. J. Hazard. Mater. 2021, 415, 125556. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. Discussion on the Process and Mechanism of Recovering Manganese from Electrolytic Manganese Waste Sludge by Biocatalytic-Chemical Method. Master’s Thesis, Hunan University, Changsha, China, 2011. [Google Scholar]
- Xie, X. Analysis of the Fertilizer Efficiency Characteristics of Electro-Manganese Sludge and Its Products. China Manganese Ind. 1999, 4, 50–53. [Google Scholar]
- Guan, Z. Research on Using Electrolytic Manganese Production Waste as a Slow-Curing Agent for Cement Production. China Manganese Ind. 2000, 2, 40–41. [Google Scholar]
- Wang, Y. Research on Using Electrolytic Manganese Slag as Cement Admixture. New Build. Mater. 2016, 43, 78–80. [Google Scholar]
- Lei, J.; Peng, B.; Chai, L.; Yan, G. Preparation of high-temperature sulfur-aluminum silicate cement clinker from electrolytic manganese slag. J. Mater. Metall. 2014, 13, 257–261. [Google Scholar]
- Zhao, S.; Han, F.; Wang, Y. Research on the Preparation of Composite Mineral Gypsum Sulfosilicate Cement Clinker from Electrolytic Manganese Slag and Magnesium Slag. Bull. Chin. Ceram. Soc. 2017, 36, 1766–1772+76. [Google Scholar]
- Liu, H.; Jiang, J. Experimental Study on the Production of Cement Using Electrolytic Manganese Slag as a Substitute for Gypsum. Cem. Eng. 2007, 2, 78–80. [Google Scholar]
- Zhu, Z. Experimental Study on the Preparation of Foam Concrete from Electrolytic Manganese Dioxide Sludge. Environ. Eng. 2016, 34, 118–121. [Google Scholar]
- Wan, W.; Fan, X.; Shi, L. A Brief Discussion on the Resource Utilization of Electrolytic Manganese Dioxide Sludge. China Resour. Compr. Util. 2020, 38, 57–59. [Google Scholar]
- Chousidis, N.; Ioannou, I.; Batis, G. Utilization of Electrolytic Manganese Dioxide (E.M.D.) waste in concrete exposed to salt crystallization. Constr. Build. Mater. 2018, 158, 708–718. [Google Scholar] [CrossRef]
- Giergiczny, Z.; Król, A. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J. Hazard. Mater. 2008, 160, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Liu, X.; Tang, B.; Mukiza, E.; Zhang, N. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits. J. Hazard. Mater. 2019, 378, 120768. [Google Scholar] [CrossRef]
- Lan, J.; Zang, S.; Mei, T.; Dong, Y.; Hou, H. Mechanochemical modification of electrolytic manganese residue: Ammonium nitrogen recycling, heavy metal solidification, and baking-free brick preparation. J. Clean. Prod. 2021, 329, 129727. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Z.; Hou, P.; Qian, J.; Cao, J. Experimental Study on the Preparation of Non-fired Bricks from Electrolytic Manganese Slag. Non-Met. Mines 2010, 33, 14–17. [Google Scholar]
- Guo, P.; Zhang, Y.; Fan, J.; Li, S. Design, Preparation and Performance Study of Non-burning Manganese Slag Bricks. Bull. Chin. Ceram. Soc. 2013, 32, 786–793. [Google Scholar]
- Qin, J.; Wang, J.; Wang, H.; Zhao, P. Research on the Compressive and Flexural Strength of Electrolytic Manganese Slag Non-fired Bricks. Met. Mine 2018, 3, 201–204. [Google Scholar]
- GB/T 30760-2024; Technical Specification for Co-Processing of Solid Waste in Cement Kiln. China Building Material Council, National Standard of the People’s Republic of China: Beijing, China, 2024.
- Wu, Z.; Feng, Z.; Pu, S.; Zeng, C.; Zhao, Y.; Chen, C.; Song, H.; Feng, X. Mechanical properties and environmental characteristics of the synergistic preparation of cementitious materials using electrolytic manganese residue, steel slag, and blast furnace slag. Constr. Build. Mater. 2024, 411, 134480. [Google Scholar] [CrossRef]
- GB 34330-2017; Identification Standards for Solid Wastes General Rules. Ministry of Ecology and Environment of the People’s Republic of China, National Standard of the People’s Republic of China: Beijing, China, 2017.
- Shi, M.; Wei, Z. The environmental hazards and resource utilization of electrolytic manganese slag. Sichuan Chem. Ind. 2016, 19, 52–54. [Google Scholar]
- Yang, D.; Su, X.; Peng, T.; Li, J.; Chen, X.; Dong, X.; Zheng, K. Research on the harmless treatment and resource utilization of electrolytic manganese slag. Mag. Introd. 2022, 2, 264–265. [Google Scholar]
- Liu, S. Comprehensive Utilization of Waste Residue from Electrolytic Manganese Metal Production. China Manganese Ind. 1998, 4, 37–39. [Google Scholar]
- Liu, Z.; Li, M.; Tao, C.; Li, D.; Yang, S. Recovery of manganese from electrolytic manganese slag by wet process. Chem. Ind. Eng. Prog. 2009, 28 (Suppl. S1), 166–168. [Google Scholar]
- Liu, G.; Pan, C.; Zhu, K.; Ru, Z.; Wei, J. Experimental Study on Circulating Counter-flow Washing of Electrolytic Manganese Dioxide Sludge Filter Cake. China Manganese Ind. 2010, 28, 36–38+42. [Google Scholar]
- Zhou, Y. Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity. Constr. Build. Mater. 2021, 294, 123533. [Google Scholar] [CrossRef]
- Wu, J.; Song, M.; Xu, X.; Cheng, H.; Rao, Z. The Progress and Research Prospects of Comprehensive Utilization of Electrolytic Manganese Slag. Chin. J. Environ. Eng. 2014, 8, 2645–2652. [Google Scholar]
- Liu, T. Research on the Preparation Process of Electrolytic Manganese Slag Compost Fertilizer. Master’s Thesis, Central South University, Changsha, China, 2012. [Google Scholar]
- Zhu, Y. Research on the Resource Utilization of Electrolytic Manganese Slag as Fertilizer. Master’s Thesis, Ningxia University, Yinchuan, China, 2015. [Google Scholar]
- Jiang, M.; Du, Y.; Du, D.; Deng, Y.; Chen, N. Experimental Study on the Preparation of Silicon-Manganese Fertilizer from Electrolytic Manganese Slag. China Manganese Ind. 2014, 32, 16–19+24. [Google Scholar]
- Xu, F.; Wang, X.; Xie, J.; Ding, D.; Chen, L. The nutritional effect of manganese in tailings on the growth of wheat. Guizhou Agric. Sci. 2010, 38, 56–58+61. [Google Scholar]
- Xu, F.; Xie, J.; Ding, D.; Chen, L. Research on the Nutritional Effects of Manganese Tailings on Radishes. J. Anhui Agric. Sci. 2010, 38, 3397–3399. [Google Scholar]
- Peng, Q. Research on the Mechanism of Silicon Activation by Sodium Carbonate Roasting of Electrolytic Manganese Residue. Master’s Thesis, South-Central Minzu University, Wuhan, China, 2018. [Google Scholar]
- Qian, J.; Hou, P.; Qiao, D.; Wang, Z.; Deng, C.; Qu, Y. Electrolytic Manganese Slag Microcrystalline Glass and Its Preparation Method. CN200910191335.5, 2 September 2009. [Google Scholar]
- Zhang, Z. Research on Efficient Resource Recovery and Utilization of Electrolytic Manganese Slag. Master’s Thesis, South China University of Technology, Guangzhou, China, 2020. [Google Scholar]
- Liu, Y.; Han, F. Experimental Study on the Preparation of Microcrystalline Glass from Electrolytic Manganese Slag. China Ceram. 2020, 56, 62–66. [Google Scholar]
- Qiao, D.; Qian, J.; Wang, Q.; Dang, Y.; Zhang, H.; Zeng, D. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir. Resour. Conserv. Recycl. 2010, 54, 1368–1376. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J. Clean. Prod. 2019, 232, 980–992. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: Mechanical properties and Mn2+ stabilization/solidification characterization. J. Hazard. Mater. 2020, 390, 122188. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Fu, Y. Preparation of Manganese Residue Sludge Based Composite Ceramsite and Its Application in Wastewater Treatment. Master’s Thesis, Anhui University of Science and Technology, Huainan, China, 2024. [Google Scholar]
- GB 6566-2010; Limits of Radionuclides in Building Materials. Ministry of Industry and Information Technology (China), National Standard of the People’s Republic of China: Beijing, China, 2010.
- Sun, Y.; Lan, J.; Guo, L.; Sun, P.; Ye, H.; Du, D.; Zhan, W. Preparation of As(III) Adsorption Materials from Electrolytic Manganese Residue and Study on Their Properties. CIESC J. 2019, 70, 2377–2385. [Google Scholar]
- Ma, M.; Du, Y.; Bao, S.; Li, J.; Wei, H.; Lv, Y.; Song, X.; Zhang, T.; Du, D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci. Total Environ. 2020, 748, 141490. [Google Scholar] [CrossRef] [PubMed]
- Wei, H. Study on leaching toxicity of manganese residue and adsorption of fluoride ion in water by its modification. J. Green Sci. Technol. 2013, 4, 168–170. [Google Scholar]
Area | SiO2 | SO3 | CaO | Al2O3 | MnO | Fe2O3 |
---|---|---|---|---|---|---|
Hunan [16] | 20.01 | 19.26 | 9.28 | 9.53 | 4.64 | 5.17 |
Chongqing [17] | 32.32 | 30.77 | 14.27 | 7.63 | 3.00 | 6.32 |
Guangxi [18] | 17.48 | 32.04 | 14.19 | 1.93 | 6.89 | 7.63 |
Chongqing Xiushan [19] | 38.55 | 27.32 | 9.34 | 7.78 | 3.11 | 6.58 |
Serial Number | Mn2+ | NH3-N | Pb2+ | Cd2+ | Cu2+ | Zn2+ |
---|---|---|---|---|---|---|
1 | 1300 | 651 | / | 0.036 | 0.051 | 1.14 |
2 | 1220 | 140 | 0.013 | 0.073 | 0.464 | 1.7 |
3 | 1414 | 502 | 0.745 | 0.034 | 0.091 | 0.453 |
4 | 912 | 1 030 | 0.24 | 0.05 | / | 0.76 |
GB 8978-1996 | 5 | 25 | 1.0 | 0.1 | 0.5 | 5.0 |
H2SO4 Concentration (mol/L) | Stripping Solution (mol/L) | Stripping Ratio (S,%) | ||||
---|---|---|---|---|---|---|
Mn2+ | Mg2+ | NH4+ | Mn2+ | Mg2+ | NH4+ | |
0.00 | 0.0023 | 0.0005 | 0.0176 | 5.2 | 40.3 | 29.4 |
0.01 | 0.0046 | 0.0008 | 0.0188 | 10.8 | 60.8 | 31.2 |
0.05 | 0.0089 | 0.0009 | 0.0208 | 20.5 | 70.1 | 34.7 |
0.10 | 0.0161 | 0.0010 | 0.0232 | 37.2 | 73.6 | 38.8 |
0.50 | 0.0349 | 0.0010 | 0.0436 | 80.6 | 77.4 | 72.6 |
1.00 | 0.0413 | 0.0010 | 0.0582 | 95.3 | 78.3 | 97.0 |
Method | Process | Advantages | Disadvantages |
---|---|---|---|
Chemistry | Precipitation | strong targeting; mature technology; large-scale application | produces secondary pollution; strict pH and metering requirements; complex operation |
Leaching | extractable valuable elements; high removal efficiency; EMR can be used as building materials after leaching | produces secondary pollution; acidic wastewater treatment is difficult | |
Physical chemistry | Curing | simple and mature process; low cost; low leaching risk | causes waste of resources |
High-temperature treatment | strong targeting; high removal efficiency; after roasting, EMR can be used as building materials | high energy consumption; harmful gases from roasting need to be recovered | |
Electrochemistry | Electromigration/ Electroosmosis | environmentally friendly; relatively low pollution; strong targeting | high energy consumption; specific equipment required |
Biology | Microorganism | economical and environmentally friendly; strong targeting; no chemical reagents required | no secondary pollution; bacterial culture complex; environmentally sensitive |
Type | Conclusion |
---|---|
Recovery of valuable elements | Manganese residue contains very little soluble manganese and ammonia nitrogen, and its recovery process is relatively complicated, with many influencing factors. |
Manganese fertilizer | Research has proven that using manganese residue to produce manganese fertilizer is feasible, benefiting agricultural development and enhancing the resource utilization of EMR [59]. |
Glass–ceramic | The preparation method of EMR glass–ceramics is simple, energy-efficient, and environmentally friendly, making it a promising direction for EMR resource utilization. |
Building materials | The preparation of cement concrete and wall materials from EMR could be an important turning point in solving the storage of EMR. |
Road base material | EMR as a roadbed material reduces the natural clay consumption while effectively utilizing EMR. |
Wastewater treatment | The application of EMR in wastewater pollutant adsorption provides a reference for developing high-value-added products. |
Application | Related Products | Manganese Residue Dosage | Weaknesses |
---|---|---|---|
Cement additives | Cement mineralizer, cement mixture, residue cement, sulfoaluminate-like cement, high iron sulfoaluminate cement | 3–5% | The ammonia removal and desulfurization processes are not yet mature, and the cost is relatively high. |
Concrete additives | Composite admixtures, sulfate activators, sulfur concrete fillers | <10% | Low activity and lack of low-cost, efficient activation technology. |
Wall material | Unburned bricks, autoclaved bricks, non-burned permeable bricks, and autoclaved aerated concrete | 30–60% | Without ammonia removal treatment, these products will suffer severe frost in humid environments; deammoniation costs are high, and market potential is limited. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Li, X.; Xu, W.; Guan, Q.; Zhou, F.; Zhang, J.; Wang, L.; Wang, Y.; Tang, H. Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization. Separations 2025, 12, 180. https://doi.org/10.3390/separations12070180
Yu W, Li X, Xu W, Guan Q, Zhou F, Zhang J, Wang L, Wang Y, Tang H. Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization. Separations. 2025; 12(7):180. https://doi.org/10.3390/separations12070180
Chicago/Turabian StyleYu, Weijian, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang, and Honghu Tang. 2025. "Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization" Separations 12, no. 7: 180. https://doi.org/10.3390/separations12070180
APA StyleYu, W., Li, X., Xu, W., Guan, Q., Zhou, F., Zhang, J., Wang, L., Wang, Y., & Tang, H. (2025). Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization. Separations, 12(7), 180. https://doi.org/10.3390/separations12070180