Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alkaline Hydrothermal Treatment of Sludge
2.2. Wastewater Treatment
2.3. Characterization
3. Results and Discussion
3.1. Conversion of Sludge into Fe/S Rods
3.2. Application of Fe/S Rods in Wastewater Treatment
3.3. Mechanism of Fe/S Rod Formation and Application
3.4. Additional Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TLA | Three-letter acronym |
LD | Linear dichroism |
Fe/S rods | A rod-shaped material rich in iron and sulfur elements |
PMS | Peroxymonosulfate |
PAC | Polybasic aluminum chloride |
References
- Zhu, S.; Lan, X.; Zheng, M.; Lin, Y.; Li, S.; Htet, O.K.; Yang, W.; Qin, W.; Jadambaa, T.; Yu, Y.; et al. Hydrometallurgy recycling of heavy metals from electroplating sludge: Recent development and challenge. Chem. Eng. Res. Des. 2025, 214, 269–280. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, Y.; Liu, B.; Lu, M.; Li, G.; Jiang, T. Extraction and Separation of Tin from Tin-Bearing Secondary Resources: A Review. Jom 2017, 69, 2364–2372. [Google Scholar] [CrossRef]
- Su, Z.J.; Zhang, Y.B.; Chen, J.; Liu, B.B.; Li, G.H.; Jiang, T. Selective separation and recovery of iron and tin from high calcium type tin- and iron-bearing tailings using magnetizing roasting followed by magnetic separation. Sep. Sci. Technol. 2016, 51, 1900–1912. [Google Scholar] [CrossRef]
- Yang, B.; Kong, L.X.; Xu, B.Q.; Liu, D.C.; Dai, Y.N. Recycling of metals from waste Sn-based alloys by vacuum separation. Trans. Nonferrous Met. Soc. China 2015, 25, 1315–1324. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, B.; Tong, J.; Liu, H.; Jiang, J. Recovery and kinetic analysis of tin from halogen electroplating anode mud by alkali leaching. Environ. Prot. Chem. Ind. 2018, 38, 476–480. [Google Scholar]
- Sun, B.; Zhang, X.; Han, Y.; Bai, J.; Qin, Y.; Tang, Y.; Jiang, J. Kinetics of Zn powder displacement of tin in Sb3+-OH− system. Hydrometall. China 2019, 38, 385–390. [Google Scholar] [CrossRef]
- Long, Y.; Song, Y.; Huang, H.; Yang, Y.; Shen, D.; Geng, H.; Ruan, J.; Gu, F. Transformation behavior of heavy metal during Co-thermal treatment of hazardous waste incineration fly ash and slag/electroplating sludge. J. Environ. Manag. 2024, 351, 119730. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, D.; Chen, H.; Zhu, S.; Wang, X.; Yang, J.; Xie, X.; Joseph, E.; Bian, D. Review of resource utilization of Fe-rich sludges: Purification, upcycling, and application in wastewater treatment. Environ. Rev. 2022, 30, 460–484. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, Q.; Zhang, H.; Yue, X.; Xue, S.; Qiu, F.; Zhang, T. One-step removal of anionic/cationic heavy metal ions from wastewater by magnetic amphoteric adsorbent. J. Water Process Eng. 2024, 65, 105847. [Google Scholar] [CrossRef]
- Zeng, H.; Yin, C.; Qiao, T.; Yu, Y.; Zhang, J.; Li, D. As(V) Removal from Water Using a Novel Magnetic Particle Adsorbent Prepared with Iron—Containing Water Treatment Residuals. ACS Sustain. Chem. Eng. 2018, 6, 14734–14742. [Google Scholar] [CrossRef]
- Tian, Q.; Zhu, Z.; Jiang, Y.; Zhao, B.; Yang, D.; Qiu, F.; Zhang, T. Upcycling of nickel from electroplating sludge as spinel/MnO2 nanowires membrane for durable emulsion separation in harsh environments. Chem. Eng. J. 2025, 507, 160508. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Liu, Y.; Zhu, S.; Liang, D.; Sun, T.; Xie, X.; Wang, X. Resource utilization of hazardous Cr/Fe-rich sludge: Synthesis of erdite flocculant to treat real electroplating wastewater. J. Environ. Health Sci. Eng. 2022, 20, 509–519. [Google Scholar] [CrossRef]
- Kedara Shivasharma, T.; Sahu, R.; Rath, M.C.; Keny, S.J.; Sankapal, B.R. Exploring tin oxide based materials: A critical review on synthesis, characterizations and supercapacitive energy storage. Chem. Eng. J. 2023, 477, 147191. [Google Scholar] [CrossRef]
- Likosova, E.M.; Keller, J.; Poussade, Y.; Freguia, S. A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge. Water Res. 2014, 51, 96–103. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, Q.; Xu, J.; Qiu, F.; Zhang, T. Enhanced separation of dual pollutants from wastewater containing Cr (VI) and oil via Fe-doped sludge derived membrane. Chem. Eng. Sci. 2024, 292, 120020. [Google Scholar] [CrossRef]
- Zhu, S.; Song, X.; Chen, Y.; Dong, G.; Sun, T.; Yu, H.; Yu, Y.; Xie, X.; Huo, M. Upcycling of groundwater treatment sludge to an erdite nanorod as a highly effienct activation agent of peroxymonosulfate for wastewater treatment. Chemosphere 2020, 252, 126586. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.; Shi, D.N.; Pan, Y.T.; Jiang, J.Y.; Song, H.Y.; Tan, W. Synthesis of mesoporous MIL-100(Fe) from acid mine drainage sludge for norfloxacin removal: Industrial sludge high value utilization, adsorbent performance and contaminant removal mechanisms. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 684, 133032. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, W.; Feng, W.; Wang, Y.; Liu, S.; Dong, Z.; Li, X. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. J. Hazard. Mater. 2021, 414, 125517. [Google Scholar] [CrossRef]
- Albuquerque, T.L.M.; Mattos, C.A.; Scur, G.; Kissimoto, K. Life cycle costing and externalities to analyze circular economy strategy: Comparison between aluminum packaging and tinplate. J. Clean. Prod. 2019, 234, 477–486. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Pang, S.-Y.; Gao, Y.; Zhou, Y.; Li, J.; Yang, Y.; Ma, J.; Zhang, T. Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants. Chemosphere 2019, 228, 602–610. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, Z.; Zhang, X.; Ding, M.; Huang, S. PH-controlled MnFe2O4@ SnS2 nanocomposites for the visible-light photo—Fenton degradation. Mater. Res. Bull. 2020, 124, 110749. [Google Scholar] [CrossRef]
- Qu, M.; Xiong, J.; Zhou, J.; Wang, L.; Hu, T.; Liu, F.; Zhang, Q. Modified water treatment residual serves as an adsorbent for the removal of heavy metals from water: A review. J. Ind. Eng. Chem. 2025, 146, 122–135. [Google Scholar] [CrossRef]
- Essalmi, S.; Lotfi, S.; BaQais, A.; Saadi, M.; Arab, M.; Ait Ahsaine, H. Design and application of metal organic frameworks for heavy metals adsorption in water: A review. RSC Adv. 2024, 14, 9365–9390. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chen, Y.; Zhu, S.; Wang, Z.; Liu, J.; Xie, X.; Yu, H. Synthesis of novel erdite nanorods for the activation of peroxymonosulfate during p-nitrophenol wastewater treatment. Environ. Sci. Pollut. Res. 2021, 28, 44408–44419. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Yao, H.; Zhuang, Y.; Gao, R.; Wang, Z.; Zhu, Z.; Lan, H.; Li, Z.; Cai, W. A PEGylated deep eutectic solvent for “bubbling” synthesis of SnO2/SnS heterostructure for the stable lithium-ion storage. J. Colloid Interface Sci. 2024, 682, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, Z.; Xiao, B.; Zhao, J.; Ma, H.; Tian, Y.; Pang, H.; Tan, L. Polyoxometalate-based metal-organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Green Chem. 2020, 22, 6157–6169. [Google Scholar] [CrossRef]
- Hu, T.; Wang, H.; Ning, R.; Qiao, X.; Liu, Y.; Dong, W.; Zhu, S. Upcycling of Fe-bearing sludge: Preparation of erdite-bearing particles for treating pharmaceutical manufacture wastewater. Sci. Rep. 2020, 10, 12999. [Google Scholar] [CrossRef]
- Ghahremaninezhad, A.; Dixon, D.G.; Asselin, E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim. Acta 2013, 87, 97–112. [Google Scholar] [CrossRef]
- Piché, S.; Larachi, F. Dynamics of pH on the oxidation of HS—With iron (III) chelates in anoxic conditions. Chem. Eng. Sci. 2006, 61, 7673–7683. [Google Scholar] [CrossRef]
- Spuhler, D.; Andrés Rengifo-Herrera, J.; Pulgarin, C. The effect of Fe2+, Fe3+, H2O2 and the photo—Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl. Catal. B Environ. 2010, 96, 126–141. [Google Scholar] [CrossRef]
- Wu, D.; Han, J.; Liu, W.; Jiao, F.; Qin, W. Preparation of Calcium Stannate from Lead Refining Dross by Roast–Leach–Precipitation Process. Minerals 2019, 9, 283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Yang, W.; Yang, W.; Chen, Y. Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater. Separations 2025, 12, 153. https://doi.org/10.3390/separations12060153
Ma S, Yang W, Yang W, Chen Y. Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater. Separations. 2025; 12(6):153. https://doi.org/10.3390/separations12060153
Chicago/Turabian StyleMa, Shengyao, Wu Yang, Weilu Yang, and Yu Chen. 2025. "Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater" Separations 12, no. 6: 153. https://doi.org/10.3390/separations12060153
APA StyleMa, S., Yang, W., Yang, W., & Chen, Y. (2025). Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater. Separations, 12(6), 153. https://doi.org/10.3390/separations12060153