Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. The Separation of Kaempferol from HPF
2.3. Comparative Analysis of TF, Its Fractions, and Kaempferol
2.4. Network Pharmacology
2.5. Molecular Docking
2.6. Molecular Dynamics (MD) Simulation
2.7. In Vitro Anti-Inflammatory Mechanism
2.7.1. Cell Viability
2.7.2. Nitric Oxide (NO) Determination
2.7.3. Western Blotting Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Purity and Identification of Kaempferol
3.2. The Results of Network Pharmacology
3.2.1. Screening of the Kaempferol and Inflammation-Related Targets
3.2.2. Construction of the Protein–Protein Interaction (PPI) Network
3.2.3. GO and KEGG Enrichment Analysis
3.3. The Results of Molecular Docking
3.4. MD Simulation
3.5. The Anti-Inflammatory Mechanism of Kaempferol In Vitro
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.L.; Mu, Z.Q.; Liang, J.; Li, X.M.; Yang, L.; He, J.W. Hosta plantaginea (Lam.) Aschers flower modulates inflammation and amino acid metabolism by inhibiting NF-κB/MAPK/JAK-STAT/PI3K-Akt and AMPK pathways to alleviate benign prostatic hyperplasia in rats. J. Ethnopharmacol. 2025, 337, 118970. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, F.X.; He, W.W.; Zhao, B.Y.; Zhang, T.; Wang, S.; Zhou, L.F.; He, J.W. Extraction optimization and constituent analysis of total flavonoid from Hosta plantaginea (Lam.) Aschers flowers and its ameliorative effect on chronic prostatitis via inhibition of multiple inflammatory pathways in rats. J. Ethnopharmacol. 2024, 318, 116922. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.X.; Chang, A.K.; Wang, Z.N.; Su, W.P.; Li, Y.N.; Liu, W.B.; Ai, J.; Tao, X.; Zheng, P.Y.; et al. Potential active constituents responsible for treating acute pharyngitis in the flowers of Hosta plantaginea (Lam.) Aschers and their pharmacokinetics. Food Funct. 2022, 13, 3308–3317. [Google Scholar] [CrossRef]
- He, J.W.; Yang, L.; Mu, Z.Q.; Zhu, Y.Y.; Zhong, G.Y.; Liu, Z.Y.; Zhou, Q.G.; Cheng, F. Anti-inflammatory and antioxidant activities of flavonoids from the flowers of Hosta plantaginea. RSC Adv. 2018, 8, 18175–18179. [Google Scholar] [CrossRef]
- Shuai, E.; Xiao, S.L.; Huang, J.; Zeng, Z.H.; Liu, S.Q.; Tan, J.J.; Zhang, H.; Cai, W. Screening of anti-inflammatory active components in Sabia schumanniana Diels by affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap mass spectrometry. J. Ethnopharmacol. 2025, 337, 118845. [Google Scholar] [CrossRef]
- Hu, L.H.; Luo, J.M.; Wen, G.Q.; Sun, L.L.; Liu, W.; Hu, H.; Li, J.; Wang, L.S.; Su, W.W.; Lin, L.Z. Identification of the active compounds in the Yi-Fei-San-Jie formula using a comprehensive strategy based on cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology techniques. Phytomedicine 2023, 115, 154843. [Google Scholar] [CrossRef]
- Li, S.R.; Wang, S.W.; Zhang, L.; Ka, Y.X.; Zhou, M.J.; Wang, Y.W.; Tang, Z.; Zhang, J.M.; Wang, W.; Liu, W. Research progress on pharmacokinetics, anti-inflammatory and immunomodulatory effects of kaempferol. Int. Immunopharmacol. 2025, 152, 114387. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, S.Q.; Li, L.Y.; Gai, Q.Y. Deep eutectic solvent-based microwave-assisted extraction for the extraction of seven main flavonoids from Ribes mandshuricum (Maxim.) Kom. leaves. Separations 2023, 10, 191. [Google Scholar] [CrossRef]
- Zhao, W.B.; Wang, B.Y.; Li, S. Network pharmacology for traditional Chinese medicine in era of artificial intelligence. Chin. Herb Med. 2024, 16, 558–560. [Google Scholar] [CrossRef]
- Xu, Y.L.; Bao, L.; Zhao, R.H.; Geng, Z.H.; Li, S.R.; Pang, B.; Sun, Q.Y.; Guo, S.S.; Cui, X.L.; Sun, J. Mechanisms of Shufeng Jiedu capsule in treating bacterial pneumonia based on network pharmacology and experimental verification. Chin. Herb Med. 2024, 16, 656–666. [Google Scholar] [CrossRef]
- Liang, J.; Dai, W.G.; Liu, C.H.; Wen, Y.F.; Chen, C.; Xu, Y.F.; Huang, S.; Hou, S.Z.; Li, C.; Chen, Y.M.; et al. Gingerenone A attenuates ulcerative colitis via targeting IL-17RA to inhibit inflammation and restore intestinal barrier function. Adv. Sci. 2024, 11, 2400206. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.W.; Yang, L.; He, J.W. Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages. Biomed. Pharmacother. 2021, 143, 112104. [Google Scholar] [CrossRef]
- He, J.W.; Zhang, Q.C.; Xia, X.Y.; Yang, L. Lagopsis supina ameliorates myocardial ischemia injury by regulating angiogenesis, thrombosis, inflammation, and energy metabolism through VEGF, ROS and HMGB1 signaling pathways in rats. Phytomedicine 2023, 120, 155050. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Shi, R.J.; Yan, S.H.; Zhang, S.B.; Lu, B.; Huang, Z.L.; Ji, L.L. Integrating network pharmacology, experimental validation and molecular docking to reveal the alleviation of Yinhuang granule on idiopathic pulmonary fibrosis. Phytomedicine 2024, 128, 155368. [Google Scholar] [CrossRef]
- Wang, C.; Fu, R.J.; Xu, D.Q.; Zuo, Q.; Liu, J.P.; Tang, Y.P. A study integrated metabolomics and network pharmacology to investigate the effects of Shicao in alleviating acute liver injury. J. Ethnopharmacol. 2024, 319, 117369. [Google Scholar] [CrossRef]
- Tu, Y.B.; Wang, K.; Tan, L.H.; Han, B.; Hu, Y.J.; Ding, H.; He, C.W. Dolichosin A, a coumestan isolated from Glycine tabacina, inhibits IL-1β-induced inflammation in SW982 human synovial cells and suppresses RANKL-induced osteoclastogenesis: From network pharmacology to experimental pharmacology. J. Ethnopharmacol. 2020, 258, 112855. [Google Scholar] [CrossRef]
- Huang, X.J.; Wang, J.; Muhammad, A.; Tong, H.Y.; Wang, D.G.; Li, J.; Ihsan, A.; Yang, G.Z. Systems pharmacology-based dissection of mechanisms of Tibetan medicinal compound Ruteng as an effective treatment for collagen-induced arthritis rats. J. Ethnopharmacol. 2021, 272, 113953. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Bian, Y.; Gu, J.F.; Yin, G.; Sun, R.L.; Liang, Y.; Wan, L.L.; Yin, Q.H.; Wang, X.; Gao, J.; et al. Exploring the anti-metastatic effects of Astragalus mongholicus Bunge-Curcuma aromatica Salisb. on colorectal cancer: A network-based metabolomics and pharmacology approach. Phytomedicine 2023, 114, 154772. [Google Scholar] [CrossRef]
- Zhang, J.W.; Han, M.T.; Wang, S.; Wu, R.X.; Zhao, Q.P.; Chen, M.H.; Yang, Y.M.; Zhang, J.; Meng, X.L.; Zhang, Y.; et al. Study on the anti-mitochondrial apoptosis mechanism of Erigeron breviscapus injection based on UPLC-Q-TOF-MS metabolomics and molecular docking in rats with cerebral ischemia-reperfusion injury. J. Ethnopharmacol. 2024, 319, 117310. [Google Scholar] [CrossRef]
- Zhai, M.Y.; Chen, T.X.; Shao, M.Q.; Yang, X.S.; Qi, Y.; Kong, S.; Jiang, L.J.; Yang, Q.P. Unveiling the molecular mechanisms of Haitang-Xiaoyin Mixture in psoriasis treatment based on bioinformatics, network pharmacology, machine learning, and molecular docking verification. Comput. Biol. Chem. 2025, 115, 108352. [Google Scholar] [CrossRef]
- Wu, D.J.; Hong, L.; Xu, S.Y.; Zhong, Z.; Gong, Q.Y.; Wang, Q.; Yan, L.J. Integrating network pharmacology and experimental validation via PPAR signaling to ameliorate rheumatoid arthritis: Insights from Corydalis Decumbentis Rhizoma (Xiatianwu). Fitoterapia 2025, 183, 106541. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.; Shen, Y.Q.; Qiu, F.B. Lycopene alleviates age-related cognitive deficit via activating liver-brain fibroblast growth factor-21 signaling. Redox Biol. 2024, 77, 103363. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, W.; Shi, Y.; Wang, L.; Khan, G.J.; Luom, M.M.; Zhou, J.; Yang, J.H.; He, C.H.; Li, F.; et al. Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches. Phytomedicine 2025, 138, 156370. [Google Scholar] [CrossRef]
- Li, F.F.; Zhang, Z.X.; Shi, Q.Y.; Wang, R.B.; Ji, M.; Chen, X.G.; Li, Y.; Liu, Y.B.; Yu, S.S. Thermal proteome profiling (TPP) reveals NAMPT as the anti-glioma target of phenanthroindolizidine alkaloid PF403. Acta Pharm. Sin. B 2025, 15, 2008–2023. [Google Scholar] [CrossRef]
- Li, J.H.; Guo, X.W.; Luo, Z.L.; Wu, D.; Shi, X.; Xu, L.X.; Zhang, Q.; Xie, C.F.; Yang, C. Chemical constituents from the flowers of Inula japonica and their anti-inflammatory activity. J. Ethnopharmacol. 2024, 318, 117052. [Google Scholar] [CrossRef]
- Meng, W.S.; Sun, J.; Lu, Y.; Cao, T.T.; Chi, M.Y.; Gong, Z.P.; Li, Y.T.; Zheng, L.; Liu, T.; Huang, Y. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway. Phytomedicine 2023, 119, 154983. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, j.h.; Shin, J.Y.; Kang, E.S.; Cho, B.O. Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in Lipopolysaccharide-stimulated RAW264.7 cells. J. Ethnopharmacol. 2023, 309, 116362. [Google Scholar] [CrossRef]
- Herrera, T.E.S.; Tello, I.P.S.; Mustafa, M.A.; Jamil, N.Y.; Alaraj, M.; Altameem, K.K.A.; Alasheqi, M.Q.; Hamoody, A.M.; Alkhafaji, A.T.; Shakir, M.N.; et al. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation. Cytokines 2025, 186, 156846. [Google Scholar] [CrossRef]
Gene | Node_Degree | Gene | Node_Degree | Gene | Node_Degree |
---|---|---|---|---|---|
AKT1 | 18 | SYK | 5 | CFTR | 1 |
ALB | 16 | TTR | 5 | DPP4 | 1 |
EGFR | 16 | ABCG2 | 4 | ESRRA | 1 |
MMP9 | 15 | CYP1B1 | 4 | ETS1 | 1 |
SRC | 15 | LTF | 4 | MMP12 | 1 |
ESR1 | 13 | MPO | 4 | RPS6KA3 | 1 |
PTGS2 | 11 | PLAU | 4 | SOD2 | 1 |
CCND1 | 9 | UGT1A3 | 4 | TERT | 1 |
ICAM1 | 8 | UGT1A9 | 4 | XDH | 1 |
APP | 7 | ALOX15 | 3 | ARG1 | 0 |
MMP2 | 7 | ALOX5 | 3 | CANT1 | 0 |
PIK3R1 | 7 | F2 | 3 | CSNK2A1 | 0 |
CYP19A1 | 6 | PLA2G1B | 3 | CXCR1 | 0 |
KDR | 6 | AHR | 2 | FABP2 | 0 |
LYN | 6 | AKR1C1 | 2 | GPR35 | 0 |
STAT5A | 6 | NR1I2 | 2 | MASP2 | 0 |
VWF | 6 | RBP4 | 2 | MMP13 | 0 |
GSK3B | 5 | ABCB1 | 1 | NR3C2 | 0 |
MAPT | 5 | ABCC1 | 1 | PRKCQ | 0 |
MMP3 | 5 | ADAM17 | 1 | TGM2 | 0 |
PARP1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xia, B.; Ouyang, H.; Guo, J.; Hu, Q.; Yang, L.; He, J. Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation. Separations 2025, 12, 138. https://doi.org/10.3390/separations12060138
Yang Y, Xia B, Ouyang H, Guo J, Hu Q, Yang L, He J. Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation. Separations. 2025; 12(6):138. https://doi.org/10.3390/separations12060138
Chicago/Turabian StyleYang, Yating, Bowei Xia, Huan Ouyang, Junyu Guo, Qingya Hu, Li Yang, and Junwei He. 2025. "Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation" Separations 12, no. 6: 138. https://doi.org/10.3390/separations12060138
APA StyleYang, Y., Xia, B., Ouyang, H., Guo, J., Hu, Q., Yang, L., & He, J. (2025). Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation. Separations, 12(6), 138. https://doi.org/10.3390/separations12060138