Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases
Abstract
:1. Introduction
Cyclodextrin | Glucose Unit | Molecular Weight | Cavity Height (Å) | Cavity Diameter (Å) | Cavity Volume (Å3) | Specific Optical Rotation ([α]25D) | Water Solubility (g/100 mL) |
---|---|---|---|---|---|---|---|
α-CD | 6 | 973 | 7.9 ± 0.1 | 4.70~5.30 | 174.0 | +150.5° | 14.5 |
β-CD | 7 | 1135 | 7.9 ± 0.1 | 6.00~6.50 | 262.0 | +162.5° | 1.85 |
γ-CD | 8 | 1297 | 7.9 ± 0.1 | 7.50~8.30 | 427.0 | +177.4° | 23.2 |
2. Chiral Resolution Mechanisms of Cyclodextrin Derivatives
2.1. Mechanism of Inclusion Complexation
2.2. Conformation-Induced Recognition Mechanism
2.3. Association Mechanism
2.4. Host-Guest Synergy Mechanism
2.5. Multimodal Interaction Mechanisms
3. Cyclodextrin-Derived Stationary Phases in Gas Chromatography
3.1. Cyclodextrin-Derived Stationary Phases
3.2. MOF/COF-Cyclodextrin Stationary Phases
3.3. Column Coupling Technology
Chiral Stationary Phase | Types of Cyclodextrin | Synthesis Protocol | Chiral Compounds | Ref. |
---|---|---|---|---|
mono-6-O-benzyl methylated γ-cyclodextrin | α, β, γ-CD | indirect and direct strategies | Menthol/Linalool/α-Terpineol p-Fluorophenylethan-1-ol p-Chlorophenylethan-1-ol Phenylethan-1-ol Pentan-2,4-diol Methyl mandelate 5-Methyl-5-propylhydantoin | [50] |
heptakis [2,6-di-O-pentyl-3-O-(49-chloro-59-pyridylmethyl)]- β-CD | β-CD | two-step procedure | 1-Phenylethylamine 5-Hydroxy-4,4-dimethyl-dihydro-furan-2-one 1-(4-Chlorophenyl) ethanol 1-(2,4-Dichlorophenyl)-ethanol Methyl a-chloropropionate 2-Bromooctane Methyl 2,2-dimethyl-3-form-acylcyclopropanecarboxylate Methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcycl opropane-carboxylate | [51] |
mono-6-deoxy-6-pyridin-1-ium/ mono-6-deoxy-6-(1-vinyl-1H-imidazol-3-ium)-α/ β-cyclodextrin trifluoromethanesulfonate ionic liquids | α, β, γ-CD | one-pot reaction solvent-free procedure | lactone epoxides hydroxy esters heavy ester | [52] |
InH(D-C10H14O4)2-Peramylated β-Cyclodextrin | permethylated β-Cyclodextrin | coated | (±)-Citronellal (±)-Methyl l-β-hydroxyisobutyrate (±)-Limonene/(±)-Dihydrocarvyl (±)-Menthol/(±)-citronellal (±)-1-Phenylethanol-Leucine | [59] |
β-CD-COF | heptakis(6-amino6-deoxy)-β-CD | condensation reaction | (±)-1-(3-methylphenyl)ethanol (±)-butyl glycidyl ether (±)-rose oxide dl-methionine/dl-histidine dl-glutamine/dl-serine dl-tyrosine/dl-glutamic acid | [60] |
CD-PlasmaCOF-1/ CD-PlasmaCOF-2 | 6-deoxy-6-mercapto-β-cyclodextrin | thiol-ene click chemistry reaction | 3-benzyloxy-1,2-propanediol trans-stilbene oxide/furoin 2-methoxy-2-phenylethanol 1-phenylethylalcohol N-(3,5-dinitrobenzoyl)- leucine 2-methyl butyric acid 2-chloropropionic acid butyl glycidyl ether styrene oxide/α-pinene ethyl 3-hydroxybutyrate 1-(1-naphthyl)ethylamine | [61] |
hepatkis(2,3-di-O-methyl-6O-t-butyl dimethylsilyl)-β-cyclodextrin coupled with 2,3diacetyl-6-tert-butyldimethylsilyl-γ-cyclodextrin | β, γ-CD | column coupling technology | eight menthol enantiomers | [64] |
4. Cyclodextrin-Derived Stationary Phases in High-Performance Liquid Chromatography
4.1. Ether-Linked Cyclodextrin Derivative Stationary Phases
4.2. Aminocarbamate-Bonded Cyclodextrin-Derived Chiral Stationary Phases
4.3. Urea Bond Linkages Cyclodextrin Derivative Stationary Phases
4.4. Thioether-Bonded Cyclodextrin Derivative Stationary Phases
4.5. Bridged Cyclodextrin Derivative Stationary Phases
4.6. Cyclodextrin-Based Chiral Stationary Phases Utilizing Chiral Porous Materials
Chiral Stationary Phase | Types of Cyclodextrin | Synthesis Protocol | Chiral Compounds | Elution Mode | Ref. |
---|---|---|---|---|---|
mono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride | β-CD | chemical reaction | racemic aromatic alcohols | NP-HPLC | [66] |
mono-6-deoxy-(2,4-dihydroxybenzimide)-β-CD | β-CD | condensation reaction | chiral 1-phenyl-2-nitroethanol derivatives | RP-HPLC | [80] |
mono(6A-N-1-(2-hydroxyl)-phenylethyl-imino-6Adeoxy)-β-cyclodextrin | β-CD | chemical reaction | 1-ferrocenylethanol 1-ferrocenylethyl acetate N,N-dimethyl-N-(1-ferrocenyleth-yl)amine 1-ferrocenyl-1-methoxyethane 1-ferrocenyl-1-(i-propoxy)ethane | RP-HPLC | [81] |
6A-(3-vinylimidazolium)-6-deoxyperphenylcarbamate-β-cyclodextrin chloride/ 6A-(N,N-allylmethylammonium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride | β-CD | chemically bonded | 6-Methoxyflavanone 7-Methoxyflavanone 4′-Hydroxyflavanone Hesperetin/Althiazide Bendroflumethiazide Trichlormethiazide Indapamide/Chlorthalidone | NP-HPLC | [84] |
3,5-dimethylphenylcarbamoylated β-cyclodextrin | mono (6A-azido-6A-deoxy)-per(3, 5-dimethylphenylcarbamoylated) β-cyclodextrin | staudinger reaction | lansoprazole/alprenolol phenylephrine hydrochloride omeprazole/ilaprazole metoprolol tartrate | NP-HPLC | [86] |
phenylcarbamoylated-β-CD modified mesoporous silica particles CSP | mono-(6A-N-allyamino-6A-deoxy)-β-CD | chemical reaction | N-(4-aminophenyl)-3-ethyl-2,6-dioxopiperidine-4-carboxamide 3-(diethylamino)-2-methoxy-2-(1- naphthylthio)-3-oxopropionate 1-(4-iodophenyl)propan-2-ol 1-(4-methylphenyl)-3-(piperidin-1-yl)butan-2-one | NP-HPLC | [89] |
Perphenylcarbamoylated β-cyclodextrin-silica (Ph-β-CD-silica) | mono (6A-N-allylamino-6A-deoxy)-Ph-β-CD | one-pot reaction | 4-Hydroxymandelic acid Diphenylethanone 4-(Dimethylamino)-1-(4-bromophenyl)-1-pyridin-2-ylbutan-1-ium 5-(2-Phenylethyl)-2-(trifluoromethyl) benzene-1,3-disulfonamide thiocarbamoyl chloride | NP-HPLC | [90] |
mono-2A-azido-2A-deoxyperphenylcarbamoylated β-cyclodextrin/ mono-2A-azido-2A-deoxyperacetylated β-cyclodextrin | tosylated-CD | chemical reaction | bendroflumethiazide tolperisone/ancymidol indapamide/brompheniramine chlorpheniramine/etilefrine propranolol/flavanone | NP/RP-HPLC | [91] |
Click β-CD | β-CD | thiol-ene click chemistry reaction | ibuprofen 5-methyluridine/uridine N4-acetylcytidine/adenosine Inosine/cytidine/guanosine Xanthosine/1-methyladenosine | HILIC/RP-HPLC | [78] |
heptakis(6-mercapto-6-deoxy)-β-CD-CSP onto alkene functional silica | β-CD | thiol-ene click chemistry reaction | Isoxazolines/chiral lactides chiral ketones/flavanones dansyl amino acids | RP-HPLC | [99] |
3-n-octadecyl-1-vinylimidazolium bromide and 6-(1-allylimidazolium)-cyclodextrin | β-CD | chemical reaction | 1-phenyl-1-propanol warfarin ketoprofen | RP-HPLC/HILIC/IEC | [100] |
mono/di(10-undecenoyl)perphenylaminocarbonyl β-CD | β-CD | thiol-ene click chemistry reaction | pindolol/propranolol alprenolol N-isopropyl-DL-noradrenaline 1-Phenylethylamine Bendroflumethiazide Ranolazine Zipiclone/Praziquantel | NP/RP-HPLC | [102] |
phenethylamine synergistic tricarboxylic acid modified β-CD CSPs | β-CD | one-pot reaction | 1-phenylethanol 1-Phenyl-1-propanol 1-phenyl-2-propanol 2-phenyl-1-propanol 1-(4-methylphenyl)-ethanol Benzoin/mandelonitrile Flavanone/6-methoxyflavanone 6-hydroxyflavanone triadimenol/propiconazole. | NP/RP-HPLC | [118] |
Sil-COF-CD | mono-(6-mercapto-6-deoxy)-β-cyclodextrin | thiol-ene click chemistry reaction | 2-phenylpropionic acid 1-phenyl-1-propanol | NP-HPLC | [104] |
bis-triazolyl bridged β-cyclodextrin | azido-β-cyclodextrin | click reaction | imazalil/flutriafol Hexaconazole/tebuconazole diniconazole/uniconazole paclobutrazol/triticonazole/ metconazole | RP-HPLC | [105] |
bridged bis(β-cyclodextrin)-bonded chiral stationary phase (SBCDP) | 6-deoxy-6-amino-β-cyclodextrin | chemical reaction | trimeprazine/praziquantel hesperidin/flavanone 2′-Hydroxy flavanone hydroxy/flavanone catechin/naringin | RP-HPLC | [113] |
CPI-EBCD | β-CD | chemical reaction | DL-Cysteine/DL-Cysteine Cobaltic acetylacetonate DL-Tyrosine Metoprolol tartrate Benzoin/Promethazine 2-phenylcyclohexanone | RP-HPLC | [114] |
CL-CD-MOF | γ-CD-MOF | chemical reaction | p,m,o-Xylene p,m,o-Dichlorobenzene Fluorobenzene Chlorobenzene Bromobenzene/Toluene | NP/RP-HPLC | [116] |
COF@CD@SiO2 | β-CD | one-pot reaction | 2-phenylpropionic acid N-acetyl-L-phenylalanine Dopa/Methyldopa Menthol/Styrene oxide | NP/RP-HPLC | [117] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green, D.W.; Lee, J.M.; Kim, E.J.; Lee, D.J.; Jung, H.S. Chiral Biomaterials: From Molecular Design to Regenerative Medicine. Adv. Mater. Interfaces 2016, 3, 1500411. [Google Scholar] [CrossRef]
- Brandt, K.; Dötterl, S.; Fuchs, R.; Navarro, D.; Machado, I.C.S.; Dobler, D.; Reiser, O.; Ayasse, M.; Milet-Pinheiro, P. Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male Orchid Bees to Stereoisomers of Carvone Epoxide. J. Chem. Ecol. 2019, 45, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Lucci, E.; Dal Bosco, C.; Antonelli, L.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products. J. Chromatogr. A 2022, 1685, 463595. [Google Scholar] [CrossRef] [PubMed]
- Rayala, V.; Kandula, J.S.; Radhakrishnanand, P. Advances and challenges in the pharmacokinetics and bioanalysis of chiral drugs. Chirality 2022, 34, 1298–1310. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhou, J.; Li, H.B. Chiral Covalent Organic Framework Packed Nanochannel Membrane for Enantioseparation. Angew. Chem.-Int. Edit. 2022, 61, e202204012. [Google Scholar] [CrossRef]
- Gourlay, M.D.; Kendrick, J.; Leusen, F.J.J. Predicting the spontaneous chiral resolution by crystallization of a pair of flexible nitroxide radicals. Cryst. Growth Des. 2008, 8, 2899–2905. [Google Scholar] [CrossRef]
- Ali, I.; Suhail, M.; Asnin, L. Chiral separation of quinolones by liquid chromatography and capillary electrophoresis. J. Sep. Sci. 2017, 40, 2863–2882. [Google Scholar] [CrossRef]
- Shinde, S.D.; Yadav, G.D. Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(±)-ketorolac. Process Biochem. 2015, 50, 230–236. [Google Scholar] [CrossRef]
- Tang, K.W.; Zhang, P.L.; Pan, C.Y.; Li, H.J. Equilibrium Studies on Enantioselective Extraction of Oxybutynin Enantiomers by Hydrophilic β-Cyclodextrin Derivatives. AIChE J. 2011, 57, 3027–3036. [Google Scholar] [CrossRef]
- Zhou, M.; Long, Y.D.; Zhi, Y.G.; Xu, X.Y. Preparation and chromatographic evaluation of a chiral stationary phase based on carboxymethyl-β-cyclodextrin for high-performance liquid chromatography. Chin. Chem. Lett. 2018, 29, 1399–1403. [Google Scholar] [CrossRef]
- Wang, X.P.; Li, H.; Quan, K.J.; Zhao, L.; Qiu, H.D.; Li, Z.G. Preparation and applications of cellulose-functionalized chiral stationary phases: A review. Talanta 2021, 225, 121987. [Google Scholar] [CrossRef] [PubMed]
- Ikai, T.; Okamoto, Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem. Rev. 2009, 109, 6077–6101. [Google Scholar] [CrossRef]
- Ilisz, I.; Berkecz, R.; Péter, A. Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. J. Chromatogr. A 2009, 1216, 1845–1860. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.; El-Sayed, D.H.; Salman, B.E.; Bakr, H.H.; Adel, S.E.; Alzarak, T.M.; Mahmoud, A. Macrocyclic Antibiotics as Effective Chiral Selectors in Liquid Chromatography for Enantiomeric Separation of Pharmaceutical Compounds: A Review. Crit. Rev. Anal. Chem. 2024, 54, 3095–3113. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Z.; Chen, J.; Wang, J.; Qiu, H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis. J. Chromatogr. A 2023, 1708, 464367. [Google Scholar] [CrossRef]
- Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent applications in chiral high performance liquid chromatography: A review. Anal. Chim. Acta 2011, 706, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.Y.; Guo, L.Z.; Xie, F.Y.; Yao, B.X.; Zeng, Q.; Weng, W. Enantioseparation of Hydrobenzoin and Structurally Related Compounds on β-Cyclodextrin and Hydroxypropyl-β-cyclodextrin Bonded Chiral Stationary Phases. Chromatographia 2011, 73, 1049–1055. [Google Scholar] [CrossRef]
- Liu, P.; He, W.; Qin, X.Y.; Sun, X.L.; Chen, H.; Zhang, S.Y. Synthesis and Application of a Novel Single-Isomer Mono-6-Deoxy-6-((2S,3S)-(+)-2,3-O-Isopropylidene-1, 4Tetramethylenediamine)-β-Cyclodextrin as Chiral Selector in Capillary Electrophoresis. Chirality 2010, 22, 914–921. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Ong, T.T.; Ge, L.Y.; Tan, S.N.; Young, D.J.; Tan, T.T.Y.; Ng, S.C. Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors. J. Sep. Sci. 2010, 33, 1797–1805. [Google Scholar] [CrossRef]
- Juvancz, Z.; Bodáné-Kendrovics, R.; Szente, L.; Maklári, D. Cyclodextrins as Dominant Chiral Selective Agents in the Capillary Separation Techniques. Period. Polytech.-Chem. Eng. 2021, 65, 580–594. [Google Scholar] [CrossRef]
- Sapte, S.; Pore, Y. Inclusion complexes of cefuroxime axetil with β-cyclodextrin: Physicochemical characterization, molecular modeling and effect of L-arginine on complexation. J. Pharm. Anal. 2016, 6, 300–306. [Google Scholar] [CrossRef]
- Haiyee, Z.A.; Saim, N.; Said, M.; Illias, R.M.; Mustapha, W.A.W.; Hassan, O. Characterization of cyclodextrin complexes with turmeric oleoresin. Food Chem. 2009, 114, 459–465. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Zhou, J.; Tang, J.; Tang, W.H. Cyclodextrin clicked chiral stationary phases with functionalities-tuned enantioseparations in high performance liquid chromatography. J. Chromatogr. A 2015, 1406, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Kharaishvili, Q.; Jibuti, G.; Farkas, T.; Chankvetadze, B. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 2016, 1467, 163–168. [Google Scholar] [CrossRef]
- Kucerová, G.; Procházková, H.; Kalíková, K.; Tesarová, E. Sulfobutylether-β-cyclodextrin as a chiral selector for separation of amino acids and dipeptides in chromatography. J. Chromatogr. A 2016, 1467, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Liu, F.P.; Mao, J.Y. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases. Anal. Chim. Acta 2016, 912, 156–162. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, P.; Wen, X.L.; Guo, X.; Luo, L.D.; Yu, J.; Guo, X.J. Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Talanta 2017, 167, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Yin, Q.H.; Cai, P.F.; Zhao, X.Y.; Pan, Y.J. Enhancement of visual chiral sensing via an anion-binding approach: Novel ionic liquids as the chiral selectors. Anal. Chim. Acta 2017, 962, 97–103. [Google Scholar] [CrossRef]
- Wang, S.S.; Han, C.; Wang, S.S.; Bai, L.J.; Li, S.S.; Luo, J.G.; Kong, L.Y. Development of a high speed counter-current chromatography system with Cu(II)-chiral ionic liquid complexes and hydroxypropyl-β-cyclodextrin as dual chiral selectors for enantioseparation of naringenin. J. Chromatogr. A 2016, 1471, 155–163. [Google Scholar] [CrossRef]
- Schurig, V. Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann. Pharm. Françaises 2010, 68, 82–98. [Google Scholar] [CrossRef]
- Xiao, Y.; Ng, S.-C.; Tan, T.T.Y.; Wang, Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J. Chromatogr. A 2012, 1269, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Scriba, G.K.E. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC Trends Anal. Chem. 2023, 160, 116987. [Google Scholar] [CrossRef]
- Hancu, G.; Modroiu, A.; Stroia, D.G.; Uilăcan, A. Analyzing the Chiral Purity of Pharmaceuticals: The Application of Cyclodextrin-Based Chiral Selectors in Capillary Electrophoresis. Symmetry 2024, 16, 1354. [Google Scholar] [CrossRef]
- Szejtli, J. Cyclodextrins and Their Inclusion Complexes. Akad. Kiado 1982, 25. Available online: https://cir.nii.ac.jp/crid/1571698599489826304 (accessed on 10 April 2025).
- Lipkowitz, K.B.; Pearl, G.; Coner, B.; Peterson, M.A. Explanation of where and how enantioselective binding takes place on permethylated beta-cyclodextrin, a chiral stationary phase used in gas chromatography. J. Am. Chem. Soc. 1997, 119, 600–610. [Google Scholar] [CrossRef]
- Zhang, Y.; Armstrong, D.W. 4,6-Di-O-pentyl-3-O-trifluoroacetyl/propionyl cyclofructan stationary phases for gas chromatographic enantiomeric separations. Analyst 2011, 136, 2931–2940. [Google Scholar] [CrossRef]
- Easton, C.J.; Lincoln, S.F. Chiral discrimination by modified cyclodextrins. Chem. Soc. Rev. 1996, 25, 163–170. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.-M.; Xu, D.; Zhang, J. Enantiomeric separation in high-performance liquid chromatography using novel β-cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Talanta 2011, 84, 1080–1092. [Google Scholar] [CrossRef]
- Bicchi, C.; D’Amato, A.; Rubiolo, P. Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields. J. Chromatogr. A 1999, 843, 99–121. [Google Scholar] [CrossRef]
- Izatt, R.M.; Bradshaw, J.S.; Pawlak, K.; Bruening, R.L.; Tarbet, B.J. Thermodynamic and kinetic data for macrocycle interaction with neutral molecules. Chem. Rev. 1992, 92, 1261–1354. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends Anal. Chem. 2019, 120, 115639. [Google Scholar] [CrossRef]
- Kano, K. MECHANISMS FOR CHIRAL RECOGNITION BY CYCLODEXTRINS. J. Phys. Org. Chem. 1997, 10, 286–291. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation science—An update. J. Chromatogr. A 2016, 1467, 56–78. [Google Scholar] [CrossRef]
- Dalgliesh, C. 756. The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc. 1952, 3940–3942. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Li, W.; Pitha, J. Reversing enantioselectivity in capillary gas chromatography with polar and nonpolar cyclodextrin derivative phases. Anal. Chem. 1990, 62, 214–217. [Google Scholar] [CrossRef]
- Peng, L.; Liu, H.; Hu, C.; Sun, Y.; Long, W. Terephthaloyl Chloride Bridged Bis (β-cyclodextrin) and Their Synergetic Bonding Behaviors with Dyes. Chin. J. Org. Chem. 2015, 35, 1330–1334. [Google Scholar] [CrossRef]
- Sand, D.M.; Schlenk, H. Acylated Cyclodextrins as Polar Stationary Phases for Gas-Liquid Chromatography. Anal. Chem. 1961, 33, 1624–1625. [Google Scholar] [CrossRef]
- Chen, G.D.; Shi, X.Y. Capillary gas chromatographic properties of three new cyclodextrin derivatives with acyl groups in the 6-position of β-cyclodextrin. Anal. Chim. Acta 2003, 498, 39–46. [Google Scholar] [CrossRef]
- Kartsova, L.A.; Makarov, A.A.; Popova, A.M. Quantitative evaluation of interactions of organic compounds with 18-crown ethers and β-cyclodextrin as components of stationary phases for gas chromatography. J. Anal. Chem. 2007, 62, 245–250. [Google Scholar] [CrossRef]
- Chaise, T.; Cardinael, P.; Tisse, S.; Combret, J.C.; Bouillon, J.P. Indirect and direct approaches in the synthesis of a new mono-6-O-benzyl methylated γ-cyclodextrin as chiral selector for enantioselective gas chromatography. Tetrahedron-Asymmetry 2008, 19, 348–357. [Google Scholar] [CrossRef]
- Shen, G.Y.; Cui, J.; Yang, X.L.; Ling, Y. Capillary GC using pyridyl β-cyclodextrin stationary phase. J. Sep. Sci. 2009, 32, 79–87. [Google Scholar] [CrossRef]
- Costa, N.; Matos, S.; da Silva, M.; Pereira, M.M.A. Cyclodextrin-Based Ionic Liquids as Enantioselective Stationary Phases in Gas Chromatography. ChemPlusChem 2013, 78, 1466–1474. [Google Scholar] [CrossRef]
- Lin, Y.S. Metal organic framework membranes for separation applications. Curr. Opin. Chem. Eng. 2015, 8, 21–28. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Yang, C.X.; Chang, N.; Yan, X.P. Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Acc. Chem. Res. 2012, 45, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yuan, C.; Hou, B.; Liu, L.J.; Li, H.Y.; Liu, Y.; Cui, Y. Chiral covalent organic frameworks: Design, synthesis and property. Chem. Soc. Rev. 2020, 49, 6248–6272. [Google Scholar] [CrossRef]
- Tozawa, T.; Jones, J.T.A.; Swamy, S.I.; Jiang, S.; Adams, D.J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S.Y.; et al. Porous organic cages. Nat. Mater. 2009, 8, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Xie, S.M.; Zi, M.; Yuan, L.M. Recent advances of application of porous molecular cages for enantioselective recognition and separation. J. Sep. Sci. 2020, 43, 134–149. [Google Scholar] [CrossRef]
- Zhang, D.W.; Ronson, T.K.; Zou, Y.Q.; Nitschke, J.R. Metal-organic cages for molecular separations. Nat. Rev. Chem. 2021, 5, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.R.; Xie, S.M.; Zhang, J.H.; Chen, L.; Nong, R.Y.; Yuan, L.M. Metal-Organic Framework [Cd(LTP)2]n for Improved Enantioseparations on a Chiral Cyclodextrin Stationary Phase in GC. J. Chromatogr. Sci. 2016, 54, 1467–1474. [Google Scholar] [CrossRef]
- Tang, B.; Wang, W.; Hou, H.P.; Liu, Y.Q.; Liu, Z.K.; Geng, L.N.; Sun, L.Q.; Luo, A.Q. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chin. Chem. Lett. 2022, 33, 898–902. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, Z.; Xiong, W.Q.; Huang, Z.F.; Lai, Y.L.; Fu, S.G.; Dong, J.Q.; Duan, A.H.; Hou, X.D.; Yuan, L.M.; et al. Cyclodextrin Incorporation into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations. J. Am. Chem. Soc. 2023, 145, 18956–18967. [Google Scholar] [CrossRef]
- Welch, C.J.; Biba, M.; Gouker, J.R.; Kath, G.; Augustine, P.; Hosek, P. Solving multicomponent chiral separation challenges using a new SFC tandem column screening tool. Chirality 2007, 19, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Tymiak, A.A.; Zhang, Y.R. Optimization and Simulation of Tandem Column Supercritical Fluid Chromatography Separations Using Column Back Pressure as a Unique Parameter. Anal. Chem. 2014, 86, 4033–4040. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, Z.G.; Liu, Z.M.; Zhu, R.Z.; Zhang, F.M.; Liu, Z.H.; Si, X.X. Botanical discrimination and classification of Mentha plants applying two-chiral column tandem GC-MS analysis of eight menthol enantiomers. Food Res. Int. 2022, 162, 112035. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Q.; Ong, T.T.; Ng, S.C. Synthesis of cationic β-cyclodextrin derivatives and their applications as chiral stationary phases for high-performance liquid chromatography and supercritical fluid chromatography. J. Chromatogr. A 2008, 1203, 185–192. [Google Scholar] [CrossRef]
- Ong, T.T.; Wang, R.Q.; Muderawan, I.W.; Ng, S.C. Synthesis and application of mono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride as chiral stationary phases for high-performance liquid chromatography and supercritical fluid chromatography. J. Chromatogr. A 2008, 1182, 136–140. [Google Scholar] [CrossRef]
- Fujimura, K.; Ueda, T.; Ando, T. Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. Anal. Chem. 1983, 55, 446–450. [Google Scholar] [CrossRef]
- Li, L.; Cheng, B.P.; Zhou, R.D.; Cao, Z.G.; Zeng, C.; Li, L.S. Preparation and evaluation of a novel N-benzyl-phenethylamino-β-cyclodextrin-bonded chiral stationary phase for HPLC. Talanta 2017, 174, 179–191. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.S.; Chen, B.P.; Zhou, R.D.; Nie, G.Z. Preparation and Characterization of a Novel Isatin Derivative of β-Cyclodextrin-bonded SBA-15 Stationary Phase for HPLC. Chin. J. Anal. Chem. 2014, 42, 375–383. [Google Scholar] [CrossRef]
- Shuang, Y.Z.; Cao, Z.G.; Zhang, T.C.; Li, L.S. Enantiomeric Separation of Chiral Triazole Pesticides by a mono -6-(4-Nitrophenyl)-ureido-β-cyclodextrin-Bonded Stationary Phase Using High-Performance Liquid Chromatography. Anal. Lett. 2020, 53, 2481–2500. [Google Scholar] [CrossRef]
- Lin, C.; Liu, W.N.; Fan, J.; Wang, Y.K.; Zheng, S.R.; Lin, R.; Zhang, H.; Zhang, W.G. Synthesis of a novel cyclodextrin-derived chiral stationary phase with multiple urea linkages and enantioseparation toward chiral osmabenzene complex. J. Chromatogr. A 2013, 1283, 68–74. [Google Scholar] [CrossRef]
- Lin, C.; Fan, J.; Liu, W.N.; Tan, Y.; Zhang, W.G. Comparative HPLC enantioseparation on substituted phenylcarbamoylated cyclodextrin chiral stationary phases and mobile phase effects. J. Pharm. Biomed. Anal. 2014, 98, 221–227. [Google Scholar] [CrossRef]
- Yao, B.X.; Yang, X.M.; Guo, L.Z.; Kang, S.S.; Weng, W. Development of a Composite Chiral Stationary Phase from BSA and β-Cyclodextrin-Bonded Silica. J. Chromatogr. Sci. 2014, 52, 1233–1238. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.M. Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases. Anal. Chim. Acta 2014, 819, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, M.; Wang, Y.T.; Zhou, W.H.; Zhou, Z.M. Preparation of chiral oxazolinyl-functionalized β-cyclodextrin-bonded stationary phases and their enantioseparation performance in high-performance liquid chromatography. J. Sep. Sci. 2016, 39, 4136–4146. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Edit. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Guo, Z.M.; Ye, J.X.; Xu, Q.; Liang, X.M.; Lei, A.W. Preparation of novel β-cyclodextrin chiral stationary phase based on click chemistry. J. Chromatogr. A 2008, 1191, 188–192. [Google Scholar] [CrossRef]
- Guo, Z.M.; Jin, Y.; Liang, T.; Liu, Y.F.; Xu, Q.; Liang, X.M.; Lei, A.W. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a “Click β-cyclodextrin” stationary phase. J. Chromatogr. A 2009, 1216, 257–263. [Google Scholar] [CrossRef]
- Allen Chang, C.; Abdel-Aziz, H.; Melchor, N.; Wu, Q.; Pannell, K.H.; Armstrong, D.W. Liquid chromatographic retention behavior of organometallic compounds and ligands with amine-, octadecylsilica- and β-cyclodextrin-bonded phase columns. J. Chromatogr. A 1985, 347, 51–60. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.M.; Dai, L.; Zhou, W.H.; Wang, J.L. Synthesis and enantioseparation characteristics of a novel mono-6-deoxy-(2,4-dihydroxybenzimide)-β-cyclodextrin as a chiral stationary phase in high-performance liquid chromatography. Talanta 2011, 86, 452–456. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhou, Z.M.; Yuan, H.; Meng, Z.H. Preparation and chiral recognition of a novel chiral stationary phase for HPLC, based on mono(6A-N-1-(2-hydroxyl)-phenylethylimino-6A-deoxy)-β-cyclodextrin and covalently bonded silica gel. Chin. Chem. Lett. 2008, 19, 797–800. [Google Scholar] [CrossRef]
- Remsburg, J.W.; Armstrong, D.W.; Péter, A.; Tóth, G. LC enantiomeric separation of unusual amino acids using cyclodextrin-based stationary phases. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 219–230. [Google Scholar] [CrossRef]
- Zhong, Q.Q.; He, L.F.; Beesley, T.E.; Trahanovsky, W.S.; Sun, P.; Wang, C.L.; Armstrong, D.W. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J. Chromatogr. A 2006, 1115, 19–45. [Google Scholar] [CrossRef]
- Wang, R.Q.; Ong, T.T.; Tang, W.H.; Ng, S.C. Cationic cyclodextrins chemically-bonded chiral stationary phases for high-performance liquid chromatography. Anal. Chim. Acta 2012, 718, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.H.; Tang, W.H.; Ng, S.C. Novel β-cyclodextrin chiral stationary phases with different length spacers for normal-phase high performance liquid chromatography enantioseparation. J. Chromatogr. A 2011, 1218, 3496–3501. [Google Scholar] [CrossRef]
- Lin, C.; Fan, J.; Liu, W.N.; Chen, X.D.; Ruan, L.J.; Zhang, W.G. A new single-urea-bound 3,5-dimethylphenylcarbamoylated β-cyclodextrin chiral stationary phase and its enhanced separation performance in normal-phase liquid chromatography. Electrophoresis 2018, 39, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.B.; Zhang, W.G.; Luo, W.J.; Fan, J. Preparation and enantioseparation characteristics of a novel chiral stationary phase based on mono (6A-azido-6A-deoxy)-per(p-chlorophenylcarba moylated) β-cyclodextrin. J. Chromatogr. A 2008, 1213, 162–168. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, D.; Chelvi, S.K.T.; Yong, E.L.; Lee, H.K.; Gong, Y.H. Preparation and application of rifamycin-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as chiral stationary phase for high-performance liquid chromatography. Talanta 2010, 83, 286–290. [Google Scholar] [CrossRef]
- Ai, F.; Li, L.S.; Ng, S.C.; Tan, T.T.Y. Sub-1-micron mesoporous silica particles functionalized with cyclodextrin derivative for rapid enantioseparations on ultra-high pressure liquid chromatography. J. Chromatogr. A 2010, 1217, 7502–7506. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Wu, M.H.; Wu, R.A.; Done, J.; Ou, J.J.; Zou, H.F. Preparation of Perphenylcarbamoylated β-Cyclodextrin-silica Hybrid Monolithic Column with “One-Pot” Approach for Enantioseparation by Capillary Liquid Chromatography. Anal. Chem. 2011, 83, 3616–3622. [Google Scholar] [CrossRef]
- Poon, Y.F.; Muderawan, I.W.; Ng, S.C. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarba moylated β-cyclodextrin and mono-2Aazido-2A-deoxyperacetylated β-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. A 2006, 1101, 185–197. [Google Scholar] [CrossRef]
- Faugeras, P.A.; Boëns, B.; Elchinger, P.H.; Brouillette, F.; Montplaisir, D.; Zerrouki, R.; Lucas, R. When Cyclodextrins Meet Click Chemistry. Eur. J. Org. Chem. 2012, 2012, 4087–4105. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487–531. [Google Scholar] [CrossRef]
- Bowman, C.N.; Kloxin, C.J. Toward an Enhanced Understanding and Implementation of Photopolymerization Reactions. AIChE J. 2008, 54, 2775–2795. [Google Scholar] [CrossRef]
- Yin, C.X.; Huo, F.J.; Zhang, J.J.; Martínez-Máñez, R.; Yang, Y.T.; Lv, H.G.; Li, S.D. Thiol-addition reactions and their applications in thiol recognition. Chem. Soc. Rev. 2013, 42, 6032–6059. [Google Scholar] [CrossRef]
- Qiao, L.Z.; Dou, A.; Shi, X.Z.; Li, H.; Shan, Y.H.; Lu, X.; Xu, G.W. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2013, 1286, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.B.; Tan, T.T.Y.; Wang, Y. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography. J. Chromatogr. A 2014, 1326, 80–88. [Google Scholar] [CrossRef]
- Chen, M.; Jin, X.; Ma, X.; Wang, Y. Click preparation and application of chiral stationary phase based on intrinsic recognition ability of cyclodextrin. Se pu Chin. J. Chromatogr. 2020, 38, 1270–1280. [Google Scholar] [CrossRef]
- Chen, M.; Lu, X.L.; Ma, X.F.; Xiao, Y.; Wang, Y. Click preparation of multiple-thioether bridged cyclodextrin chiral materials for efficient enantioseparation in high-performance liquid chromatography†. Analyst 2021, 146, 3025–3033. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Ren, X.J.; Luo, Q.R.; Gao, D.; Fu, Q.F.; Zhou, D.; Zu, F.J.; Xia, Z.N.; Wang, L.J. Ionic liquid functionalized β-cyclodextrin and C18 mixed-mode stationary phase with achiral and chiral separation functions. J. Chromatogr. A 2020, 1634, 461674. [Google Scholar] [CrossRef]
- Zhou, J.; Pei, W.J.; Zheng, X.X.; Zhao, S.Z.; Zhang, Z.Z. Preparation and Enantioseparation Characteristics of a Novel β-Cyclodextrin Derivative Chiral Stationary Phase in High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 676–679. [Google Scholar] [CrossRef]
- Huang, G.; Ou, J.J.; Zhang, X.D.; Ji, Y.S.; Peng, X.J.; Zou, H.F. Synthesis of novel perphenylcarbamated β-cyclodextrin based chiral stationary phases via thiol-ene click chemistry. Electrophoresis 2014, 35, 2752–2758. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lu, X.L.; Sun, S.; Xiao, Y.; Wang, Y.; Jin, X.N.; Ma, X.F. Surface-up click access to allylimidazolium bridged cyclodextrin dimer phase for efficient enantioseparation. J. Sep. Sci. 2023, 46, 2300075. [Google Scholar] [CrossRef]
- Wan, M.J.; Zheng, Y.C.; Dai, X.M.; Yang, H.L.; Zhou, J.Q.; Ou, J.; Yang, Y.X.; Liao, M.F.; Xia, Z.N.; Wang, L.J. Click Chemistry for the Preparation of β-Cyclodextrin Grafting Uniform Spherical Covalent Organic Framework Materials for Chiral Separation. Chem. Mat. 2023, 35, 609–616. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Huang, Z.Q.; Li, D.; Li, L.S. Preparation of a bis-triazolyl bridged β-cyclodextrin stationary phase and its application for enantioseparation of chiral compounds by HPLC. Chirality 2024, 36, e23644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Y.C.; Shi, H.; Zhu, H.Y.; Huang, R.; Chi, C.M.; Zhao, Y. Synthesis of Novel Bis(β-cyclodextrin)s Linked with Glycol and Their Inclusion Complexation with Organic Dyes. Helv. Chim. Acta 2010, 93, 1136–1148. [Google Scholar] [CrossRef]
- Baugh, S.D.P.; Yang, Z.W.; Leung, D.K.; Wilson, D.M.; Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 2001, 123, 12488–12494. [Google Scholar] [CrossRef]
- Sun, H.L.; Chen, Y.; Zhao, J.; Liu, Y. Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by -Cyclodextrin Dimers. Angew. Chem.-Int. Edit. 2015, 54, 9376–9380. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681–691. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.L.; Chen, Y.; Ding, F.; Chen, G.S. Binding behavior of aliphatic oligopeptides by bridged and metallobridged bis(β-cyclodextrin)s bearing an oxamido bis(2-benzoic) carboxyl linker. Bioconjug. Chem. 2004, 15, 1236–1245. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, S.; Chen, Y.; Yang, Y.W.; Huskens, J. Photo-induced switchable binding behavior of bridged bis(β-cyclodextrin) with an azobenzene dicarboxylate linker. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 197–201. [Google Scholar] [CrossRef]
- Chen, L.X.; Zhang, Y.M.; Cao, Y.; Zhang, H.Y.; Liu, Y. Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticles for controlled paclitaxel delivery. RSC Adv. 2016, 6, 28593–28598. [Google Scholar] [CrossRef]
- Shuang, Y.Z.; Zhang, T.C.; Li, L.S. Preparation of a stilbene diamido-bridged bis(β-cyclodextrin)-bonded chiral stationary phase for enantioseparations of drugs and pesticides by high performance liquid chromatography. J. Chromatogr. A 2020, 1614, 460702. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Liu, C.; Zhou, J.H.; Zhao, X.R.; Shen, Y.Q.; Cong, H.L.; Yu, B. Short bridging and partial derivatization synergistically modified ll-cyclodextrin bonded chiral stationary phases for improved enantioseparation. Talanta 2024, 273, 125830. [Google Scholar] [CrossRef]
- Yang, C.X.; Zheng, Y.Z.; Yan, X.P. γ-Cyclodextrin metal-organic framework for efficient separation of chiral aromatic alcohols. RSC Adv. 2017, 7, 36297–36301. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, C.C.; Wu, Y.H.; Wang, C.F.; Guo, T.; Zhang, J.W.; Sun, L.X. Cross-linked γ-cyclodextrin metal-organic framework-a new stationary phase for the separations of benzene series and polycyclic aromatic hydrocarbons. Microchim. Acta 2021, 188, 245. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Wan, M.J.; Zhou, J.Q.; Dai, X.M.; Yang, H.L.; Xia, Z.N.; Wang, L.J. One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism. J. Chromatogr. A 2022, 1662, 462731. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Shi, C.; Zhao, L.; Li, Z.; Qiu, H. Chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin immobilized on porous silica for enantioseparation. Chin. Chem. Lett. 2023, 34, 107606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Jia, J.; Zhao, Y.; Ning, A.; Huang, R. Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases. Separations 2025, 12, 97. https://doi.org/10.3390/separations12040097
Du W, Jia J, Zhao Y, Ning A, Huang R. Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases. Separations. 2025; 12(4):97. https://doi.org/10.3390/separations12040097
Chicago/Turabian StyleDu, Wenlanqi, Jia Jia, Yinghong Zhao, Ailing Ning, and Rongfu Huang. 2025. "Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases" Separations 12, no. 4: 97. https://doi.org/10.3390/separations12040097
APA StyleDu, W., Jia, J., Zhao, Y., Ning, A., & Huang, R. (2025). Research Progress on the Development and Application of Cyclodextrin-Based Chromatographic Stationary Phases. Separations, 12(4), 97. https://doi.org/10.3390/separations12040097