Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications
Abstract
:1. Introduction
2. Cellulose-Based Hydrogels for Sustainable and Efficient Water Treatment
2.1. Basic Properties and Chemical Structure of Cellulose
2.2. Cellulose-Based Hydrogels for Water and Wastewater Treatment
3. Sustainable Synthesis and Processing of Cellulose-Based Hydrogels
Methods | Characteristic | References |
---|---|---|
Physical cross-linking by hydrogen bonding, ionic interactions, hydrophobic interactions, π–π interactions, and van der Waals forces | Low toxicity, high porosity, higher adsorption opportunities, low sensitivity to pH, and easy regeneration (it is a reversible process), but weak mechanical strength and stability | [113] |
Chemical cross-linking using cross-linking agents | High mechanical strength and stability, easy to handle, and common; however, toxicity exists and has a large impact on biocompatibility | [128] |
IPN or semi-IPN | High strength, toughness, and self-healing; complex preparation and existing compatibility issues between different polymer networks | [129] |
Use of radiation to initiate free radical reactions that promote cross-linking | Fast response, excellent transparency, homogeneity, and mechanical properties, particularly suitable for 3D printing technology; high requirements for control of radiation source, dose, and exposure time | [127] |
3.1. Physical Cross-Linking
3.1.1. Repeated Freeze–Thaw Cycles
3.1.2. Ionotropic Gelation
3.1.3. Self-Assembling
3.2. Chemical Cross-Linking
3.2.1. Free Radical Polymerization Crosslinking
3.2.2. Schiff Base Reaction
3.2.3. Click Chemistry
3.2.4. Radiation Crosslinking
3.3. Composite Hydrogels
3.3.1. Nano-Reinforced Cellulose-Based Hydrogels
Nanocellulose Composite Hydrogels
Cellulose-Based Hydrogels Reinforced with Inorganic Nanomaterials
Organic Nanomaterials Reinforcing Cellulose-Based Hydrogels
3.3.2. Multi-Network Composite Cellulose-Based Hydrogels
Dual-Network Cellulose-Based Hydrogels
IPNs and Semi-IPNs Cellulose-Based Hydrogels
4. Cellulose-Based Hydrogels for Heavy Metal, Dye, and Micropollutant Removal Applications
4.1. Heavy Metal Adsorption
Cellulose-Based Hydrogels | Heavy Metals | Adsorption Capacity (mg/g) | Cyclic Performance | Reference |
---|---|---|---|---|
CMC/FGL@BSP | Cd2+, Hg2+, and Pb2+ | 147.7, 88.62, and 163.89, respectively. | [275] | |
SCC-CuMOF | Pb2+ | 531.38 | from 93.0% to 73.9% after five cycles | [246] |
SA/CNF | Pb2+ | 544.66 | Maintained above 81 per cent after 5 cycles | [280] |
κ-CG/Cellulose | Pb2+ | 486 ± 28.5 | More than 79% after eight cycles | [281] |
G50 | UO22+ | 572.3 | [269] | |
CMC/CS/SA(PSCA) | Cr6+, Ni2+, and Cu2+ | More than 750 | [282] | |
CS/MCCP | Pb2+ and Cu2+ | 211.42 and 74.29, respectively. | [274] | |
Cellulose (37%)–chitosan (63%) | Cu2+ | 94.3 | [283] | |
Cellulose/chitosan/PVA/nano-Fe3O4 | Cu2+ | 15.95 | above 80% after four cycles | [277] |
BCS | Ag+, Pb2+, and Cu2+ | 407, 1250, and 1111, respectively. | regenerated 7 times without much loss of adsorption properties | [279] |
Cellulose-g-poly (acrylic acid)/poly (vinyl alcohol) | Cu2+ | 142.7 | [284] | |
CMC-Al beads | Pb2+, Ni2+, and Co2+ | 550, 620, and 760, respectively. | [285] |
4.2. Dye Removal
Cellulose-Based Hydrogels | Dyes | Qe (mg/g) | Optimal Conditions | Cycles | Reference | ||
---|---|---|---|---|---|---|---|
pH | T (°C) | Dose (g) | |||||
CMC-g-(PSPMA) | MB | 1675 | 6 | 0.05 | 5 | [296] | |
Cellulose/MTM | MB | 277 | 7 | 25 | [297] | ||
CA/CNC | MB | 676.7 | 7 | 25 | 0.02 | [82] | |
HEC-Co-P(AA-AM)/TA | MB | 3438.27 | 8 | 25 | 0.2 | 5 | [170] |
CMC/GO/ZnO | BF | 303.03 | 6 | 0.01 | 5 | [288] | |
TiO2@MMTNS/CMC/CS | MB | 283.97 | 8 | 60 | 0.2 | 5 | [225] |
CS/CMC-NCH | MB MO | 655.98 404.52 | 3 | 25 | 0.6 | 20 | [235] |
g-C3N4@SBC/CMC | MB | 362.3 | 7 | 25 | 1 | 7 | [238] |
CS/CMC-PEG | CR MB | 1053.88 331.72 | 4 11 | 30 | 0.6 0.8 | [298] | |
CGC/NaAlg | MB CR | 400.504 11.45 | 6 2 | 25 | 0.2 | 6 | [299] |
SNC-g-poly-(AMPSA)-cl-MBAm | MG | 357.143 | 6 | 30 | 8 | [290] | |
CM-MA CM-CH | MB MLB | 934.63 706.64 | 25 | 5 | [182] | ||
CS/CMC-NCH | MB MO | 655.98 404.52 | 8 2 | 45 | 0.4 0.6 | 20 | [235] |
CMC-DS-AgZ | BR46 MB | 344.82 454.55 | 7 | 1 | 5 | [291] |
4.3. Micropollutant Removal
Feed Water Characteristics | Micropollutants | Cellulose-Based Hydrogels | Qe (mg/g) | Conditions | Cycles | Reference | ||
---|---|---|---|---|---|---|---|---|
pH | T (°C) | Dose (g) | ||||||
Antibiotics wastewater | LEV | βCCH | 1376.9 | 6 | 25 | 5 | [303] | |
TC | FMIH | 544.4 | 3 | 45 | 3.5 | 6 | [304] | |
DOXY | SA-DCNC | 594.6 | 7 | 45 | 5 | [312] | ||
DOXY | LCCH | 1686 | 6 | 60 | 5 | [313] | ||
TC | CH | 541.3 | 8 | 45 | 4 | [314] | ||
Pharmaceutical and personal care products wastewater | DCF | P/TCNF | 498 | 3.4 | 25 | [305] | ||
DCF | FG-CMC3% | 666.7 | 4.2 | 25 | 4 | [315] | ||
Ibuprofen | Alg/AC/CMC | 28.3 | 10 | [308] | ||||
Fluorides wastewater | F- | CMC-g-AMPS/Fe/Al/AC | 67.114 | 6 | [306] | |||
Endocrine disruptors wastewater | BPA | SCZC | 1696 | 7 | 15 | 5 | [310] | |
BPA | FeN@CP | 309.17 | 2 | 25 | 5 | [316] | ||
Microplastic wastewater | MFs | BCH | 93.6% flocculation | 5.37 | 25 | [311] |
5. Challenges and Future Perspectives
5.1. Mechanical Performance Challenges
5.2. Solvent Use and Biodegradability Challenges
5.3. Fouling and Long-Term Stability Challenges
5.4. Scalability and Cost-Effectiveness
5.5. Variability of Natural Water Bodies
5.6. Strategies for Improving Practicality
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBHs | Cellulose-based hydrogels | CNC | Cellulose nanocrystals | CNF | Cellulose nanofibrils |
BNC | Bacterial nanocellulose | -OH | Hydroxyl group | CD | Cellulose derivatives |
PVA | Polyvinyl alcohol | CMC | Carboxymethyl cellulose | BC | Bacterial cellulose |
GO | Graphene oxide | ATP | Attapulgite | CMCF | Carboxymethylcellulose nanofiber |
CA | Citric acid | IG | Ionotropic gelation | SA | Sodium alginate |
HPC | Hydroxypropyl cellulose | CGG | Cationic guar gum | TOCN | TEMPO (2,2,6,6-tetramethylpiperidin-1-yloxy)-oxidized cellulose nanofibers |
MLB | Methyl blue | MB | Methylene blue | KPS | Potassium persulfate |
TEMED | Tetramethylene diamine | APS | Ammonium persulfate | MBA | N, N′-methylene-bis(acrylamide) |
AA | Acrylic acid | AM | Acrylamide | HEC | Hydroxyethyl cellulose |
TA | Tannic acid | ZnO | Zinc oxide | MCC | Microcrystalline cellulose |
MV | Methyl violet | RhB | Rhodamine B | DCMC | Dialdehyde carboxymethyl cellulose |
CH | Cysteamine hydrochloride | CM | Cellulose methacrylate | BHNC | Bifunctional hairy nanofibrillar cellulose |
MA | Maleic anhydride | ECH | Epichlorohydrin | MA | 3-mercaptopropionic acid |
PEG | Polyethylene glycol | CP | Chlorpyrifos | PAH | Poly-(allylamine hydrochloride) |
MO | Methyl orange | CA | Cellulose acetate | CMC | Carboxymethyl cellulose |
CDs | Carbon dots | CS | Chitosan | CNs | Cellulose nanofibrils |
ECH | Epichlorohydrin | HA | Hydroxyapatite | LDH | Laminar double hydroxide |
PDA | Polydopamine | PEI | Polyethyleneimine | MoS2 | Molybdenum disulfide |
SA | Sodium alginate | PAA | Polyacrylic acid | G-C3N4 | Graphitic carbon nitride |
TAPB | 1,3,5-tris(4-aminophenyl)-benzene | BP | 2,2′-bipyridine-5,5′-formaldehyde | TEMPO | (2,2,6,6-Tetramethylpiperidin-1-yl) oxyl |
PEI | Polyethyleneimine | DMSO | Dimethyl-sulfoxide | MOFs | Metal-organic frameworks |
PAM | Polyacrylamide | NFC | Nano-fibrillated cellulose | COFs | Covalent organic frameworks |
FGL | Fish gelatin | MFC | Microfibrillar cellulose | NMMO | N-methyl morpholine-N-oxide |
PSCA | Pore structure control agent | BSP | Bamboo shoot particles | DMAEMA | 2-dimethylaminoethyl methacrylate monomer |
CR | Congo red | κ-CG | Kappa-carrageenan | HEMA | Tert-butyl acrylate-co-2-hydroxyethyl methacrylate |
MG | Malachite green | BF | Basic fuchsin | DES | Deep eutectic solvent |
BR46 | Basic red 46 | AgZ | Ag-zeolite | MCCP | Cellulose phosphonate |
CV | Crystalline violet | LEV | Levofloxacin | SNC | Spherical nanocellulose |
TC | Tetracycline | WCNs | Wood-derived cellulose nanocrystals | PDChNF | Partially deacetylated chitin nanofibers |
DOXY | Doxycycline | DCF | Diclofenac | AMPSA | 2-acrylamido-2-methylpropanesulfonic acid |
BPA | Bisphenol A | AC | Activated carbon | DS | Sodium dextran Sulfate |
Alg | Alginate | MFs | Microfibers |
References
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Ali, A.B.; Li, H.; Elshaikh, N.A.; Yan, H.F. Assessing impacts of water harvesting techniques on the water footprint of sorghum in Western Sudan. Outlook Agric. 2016, 45, 185–191. [Google Scholar] [CrossRef]
- Mao, F.; Miller, J.D.; Young, S.L.; Krause, S.; Hannah, D.M.; Network, H.R.C. Inequality of household water security follows a Development Kuznets Curve. Nat. Commun. 2022, 13, 4525. [Google Scholar] [CrossRef]
- Marcal, J.; Antizar-Ladislao, B.; Hofman, J. Addressing Water Security: An Overview. Sustainability 2021, 13, 13702. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.; Zhao, X.; Zhao, D.; Ding, X.; Yin, Y.; Liu, Y. Study on Evaluation and Dynamic Early Warning of Urban Water Resources Security. Water 2025, 17, 242. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.Q.; Cui, M.M.; Yu, H.C.; Fan, X.; Zhu, Z.Q.; Zhang, H.Y.; Dai, Z.C.; Sun, J.F.; Yang, B.; Du, D.L. Global Environmental Change Shifts Ecological Stoichiometry Coupling Between Plant and Soil in Early-Stage Invasions. J. Soil Sci. Plant Nutr. 2024, 24, 2402–2412. [Google Scholar] [CrossRef]
- Antunes, L.N.; Ghisi, E.; Souza, J.C. Stormwater harvested from a permeable pavement for use in the fire extinguishing system and non-potable uses of a building: A case study. Urban Water J. 2022, 19, 433–440. [Google Scholar] [CrossRef]
- Foster, S.; Andreo, B. Public groundwater supplies: Minimising operational costs and carbon footprints. Hydrogeol. J. 2024, 32, 1253–1257. [Google Scholar] [CrossRef]
- Tow, E.W.; Hartman, A.L.; Jaworowski, A.; Zucker, I.; Kum, S.; AzadiAghdam, M.; Blatchley, E.R.; Achilli, A.; Gu, H.; Urper, G.M.; et al. Modeling the energy consumption of potable water reuse schemes. Water Res. X 2021, 13, 100126. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.M.; Abuarab, M.E.; Kassem, M.; Wasef, E.; El-Ssawy, W. Applying Different Magnetic Water Densities as Irrigation for Aeroponically and Hydroponically Grown Strawberries. Agriculture 2022, 12, 819. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.F.; Zhang, C.; Wang, G.Q.; He, B.; Hao, B.B.; Han, Y.J.; Wang, B.Y.; Bao, R.X.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, Y.; Yin, L.; Chen, Y.; Xue, Y.; Wang, X.; Mao, D.; Luo, Y. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. J. Hazard. Mater. 2023, 442, 130005. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.; Jeyakumar, R.B.; Somanathan, A. Challenges and Emerging Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation Processes with Biological Processes for Wastewater Treatment. Sustainability 2023, 15, 4235. [Google Scholar] [CrossRef]
- Klink, J.; Perello, L.A.; Abily, M.; Salo, J.; Rodriguez-Roda, I.; Marce, R.; Gernjak, W.; Corominas, L. Coupling hydrological and sanitation datasets to simulate wastewater-derived contamination in European rivers: Model development and calibration. Environ. Model. Softw. 2024, 178, 106049. [Google Scholar] [CrossRef]
- Shi, W.J.; Xu, C.; Cai, J.W.; Wu, S.P. Advancements in material selection and application research for mixed matrix membranes in water treatment. J. Environ. Chem. Eng. 2023, 11, 106049. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ramadan, H.; Elsamahy, T.; Eltawab, R.; Mostafa, S.; Zhou, X.; Cheng, L. Multifaced features and sustainability of using pure oxygen in biological wastewater treatment: A review. J. Water Process Eng. 2023, 53, 103883. [Google Scholar] [CrossRef]
- Feng, C.; Wu, F.; Zhang, L.; Yang, X.; Zhuang, Y. Assessing provincial integrated wastewater treatment efficiency and influencing factors considering triple bottom line. J. Clean. Prod. 2025, 491, 144724. [Google Scholar] [CrossRef]
- Feng, H.; Jin, L.; Chen, Y.; Ji, J.; Gong, Z.; Hu, W.; Ying, C.; Liang, Y.; Li, J. Tofu wastewater as a carbon source flowing into municipal wastewater treatment plants for reductions of costs and greenhouse gas emissions. J. Environ. Manag. 2024, 370, 122550. [Google Scholar] [CrossRef]
- Zhang, C.; Quan, B.; Tang, J.; Cheng, K.; Tang, Y.; Shen, W.; Su, P.; Zhang, C. China’s wastewater treatment: Status quo and sustainability perspectives. J. Water Process Eng. 2023, 53, 103708. [Google Scholar] [CrossRef]
- Cai, R.; Chen, Y.; Hu, J.; Xiong, J.; Lu, J.; Liu, J.; Tan, X.; Liu, W.; Zhou, Y.; Chen, Y. A self-supported sodium alginate composite hydrogel membrane and its performance in filtering heavy metal ions. Carbohydr. Polym. 2023, 300, 120278. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Q.; Lu, J.; Wu, Y.L.; Meng, M.J.; Yu, C.; Sun, C.; Chen, M.N.; Da, Z.L.; Yan, Y.S. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem. 2020, 333, 127477. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Shi, W.J.; Li, K.H.; Cai, J.W.; Xu, C.; Gao, L.; Lu, J.W.; Ding, F.Y. Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int. J. Biol. Macromol. 2023, 239, 124264. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Ang, W.L.; Leo, C.P.; Mohammad, A.W.; Hilal, N. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination 2021, 517, 115170. [Google Scholar] [CrossRef]
- Bera, S.P.; Godhaniya, M.; Kothari, C. Emerging and advanced membrane technology for wastewater treatment: A review. J. Basic Microbiol. 2022, 62, 245–259. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, Y.; Liu, L.; Li, Z.; Chen, X.; Xia, M.; Fan, G.; Ding, A. Membrane Distillation for Wastewater Treatment: A Mini Review. Water 2021, 13, 3480. [Google Scholar] [CrossRef]
- Zulkefli, N.F.; Alias, N.H.; Jamaluddin, N.S.; Abdullah, N.; Abdul Manaf, S.F.; Othman, N.H.; Marpani, F.; Mat-Shayuti, M.S.; Kusworo, T.D. Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment. Membranes 2022, 12, 26. [Google Scholar] [CrossRef]
- Hu, R.-Z.; Zhang, Z.-F.; Yu, B.-Q.; Wang, J.; Yao, X.-H.; Chen, T.; Zhao, W.-G.; Zhang, D.-Y. Natural phenolics and flavonoids modified the hierarchical cellular cellulose sponges for efficient water disinfection. Carbohydr. Polym. 2022, 296, 119962. [Google Scholar] [CrossRef]
- Fotoohi, E.; Mokhtarian, N.; Farahbod, F. Operational analysis of the biological treatment unit’s ultraviolet-wave disinfection method for wastewater outflow. Appl. Water Sci. 2024, 14, 27. [Google Scholar] [CrossRef]
- Kalli, M.; Noutsopoulos, C.; Mamais, D. The Fate and Occurrence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes during Advanced Wastewater Treatment and Disinfection: A Review. Water 2023, 15, 2084. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Li, L.; Song, B.; Zhou, C.; Zeng, G.; Zhang, Y.; Xiao, R. Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection. J. Clean. Prod. 2021, 315, 128188. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, H.; Cai, J.; Liu, J.; Wang, Y.; Deng, J. Research progress of electrochemical oxidation and self-action of electric field for medical wastewater treatment. Front. Microbiol. 2023, 13, 1083974. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Guo, X.; Cao, J.; Yang, S.; Qiu, Z.; Wang, J.; Shen, Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. Sci. Total Environ. 2023, 900, 165602. [Google Scholar] [CrossRef]
- Chuang, Y.-H.; Shi, H.-J. UV/chlorinated cyanurates as an emerging advanced oxidation process for drinking water and potable reuse treatments. Water Res. 2022, 211, 118075. [Google Scholar] [CrossRef] [PubMed]
- Antinolo Bermudez, L.; Martin Pascual, J.; Munio Martinez, M.d.M.; Poyatos Capilla, J.M. Effectiveness of Advanced Oxidation Processes in Wastewater Treatment: State of the Art. Water 2021, 13, 2094. [Google Scholar] [CrossRef]
- Bracamontes-Ruelas, A.R.; Reyes-Vidal, Y.; Irigoyen-Campuzano, J.R.; Reynoso-Cuevas, L. Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process. Catalysts 2023, 13, 748. [Google Scholar] [CrossRef]
- Manna, M.; Sen, S. Advanced oxidation process: A sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ. Sci. Pollut. Res. 2023, 30, 25477–25505. [Google Scholar] [CrossRef]
- Yeneneh, A.M.; Al Balushi, K.; Jafary, T.; Al Marshudi, A.S. Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review. Sustainability 2024, 16, 4601. [Google Scholar] [CrossRef]
- Soliman, A.I.A.; Díaz Baca, J.A.; Fatehi, P. One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption. Carbohydr. Polym. 2023, 308, 120619. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.P.; Qiu, F.X.; Zhang, T.; Xu, J.C. Controllable preparation of FeOOH/CuO@WBC composite based on water bamboo cellulose applied for enhanced arsenic removal. Food Bioprod. Process. 2020, 123, 177–187. [Google Scholar] [CrossRef]
- Alaoui, S.B.; Achak, M.; Lamy, E. Hydrodynamic Behavior of Natural Adsorbents Filters for Water Treatment Technology. Chem. Eng. Technol. 2023, 46, 1235–1240. [Google Scholar] [CrossRef]
- Eniola, J.O.O.; Sizirici, B.; Fseha, Y.; Shaheen, J.F.; Aboulella, A.M. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water. Environ. Sci. Pollut. Res. 2023, 30, 88245–88271. [Google Scholar] [CrossRef]
- Ni, C.; Liu, C.; Xie, Y.; Xie, W.; He, Z.; Zhong, H. A critical review on adsorption and recovery of fluoride from wastewater by metal-based adsorbents. Environ. Sci. Pollut. Res. 2022, 29, 82740–82761. [Google Scholar] [CrossRef]
- Zaimee, M.Z.A.; Sarjadi, M.S.; Rahman, M.L. Heavy Metals Removal from Water by Efficient Adsorbents. Water 2021, 13, 2659. [Google Scholar] [CrossRef]
- Kushwaha, J.; Singh, R. Cellulose hydrogel and its derivatives: A review of application in heavy metal adsorption. Inorg. Chem. Commun. 2023, 152, 110721. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.P.; Zhang, T.; Zhu, Y.L.; Qiu, F.X. Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution. Food Bioprod. Process. 2020, 119, 257–267. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.J.; Zhao, T.; Li, F.; Zhang, M.; Li, J.; Zou, Y.; Wang, W.; Cobbina, S.J.; Wu, X.Y.; et al. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem. 2016, 194, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Fu, W.G. Sponge effect of aerated concrete on phosphorus adsorption-desorption from agricultural drainage water in rainfall. Soil Water Res. 2020, 15, 220–227. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Tenhu, H.; Khattab, S.A.; Eldeeb, A.A.; Azaam, M.M. Highly efficient adsorbent material for removal of methylene blue dye based on functionalized polyacrylonitrile. Eur. Polym. J. 2022, 169, 111138. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Hsu, W.-L.; Wang, Y.-S.; Kuo, H.-Y.; Tsai, H.-A.; Lee, K.-R. Using Tannic-Acid-Based Complex to Modify Polyacrylonitrile Hollow Fiber Membrane for Efficient Oil-In-Water Separation. Membranes 2023, 13, 351. [Google Scholar] [CrossRef]
- Chen, X.; Wan, C.; Yu, R.; Meng, L.; Wang, D.; Chen, W.; Duan, T.; Li, L. A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water. J. Hazard. Mater. 2021, 411, 125113. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sharma, V.; Mishra, P.K.; Ekielski, A. A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment. Molecules 2022, 27, 8689. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wu, H.; Xu, L.; Dong, F.; Jia, Y.; Liu, X. Removal of Acidic Organic Ionic Dyes from Water by Electrospinning a Polyacrylonitrile Composite MIL101(Fe)-NH2 Nanofiber Membrane. Molecules 2022, 27, 2035. [Google Scholar] [CrossRef] [PubMed]
- Ruzmetov, U.U.; Jumayeva, E.S.; Smanova, Z.A. Adsorption-Atomic-Absorption Determination of Cu(II) Ions in Technogenic Waters. J. Anal. Chem. 2024, 79, 578–584. [Google Scholar] [CrossRef]
- Lin, H.; Jie, B.; Ye, J.; Zhai, Y.; Luo, Z.; Shao, G.; Chen, R.; Zhang, X.; Yang, Y. Recent advance of macroscopic metal-organic frameworks for water treatment: A review. Surf. Interfaces 2023, 36, 102564. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, C.; Zhao, Y.-G.; Ye, M.-L.; Yang, K. Orientation Growth of N-Doped and Iron-Based Metal-Organic Framework and Its Application for Removal of Cr(VI) in Wastewater. Molecules 2024, 29, 1007. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, J.; Xia, G.; Tang, Y.; Liu, Q.; Li, Y.; Fang, B.; Yao, J. Metal-Organic Framework Templated Z-Scheme ZnIn2S4Bi2S3 Hierarchical Heterojunction for Photocatalytic H2O2 Production from Wastewater. Small 2024, 20, 2403268. [Google Scholar] [CrossRef]
- Kaur, M.; Yusuf, M.; Tsang, Y.F.; Kim, K.-H.; Malik, A.K. Amine/hydrazone functionalized Cd(II)/Zn(II) metal-organic framework for ultrafast sensitive detection of hazardous 2,4,6-trinitrophenol in water. Sci. Total Environ. 2023, 857, 159385. [Google Scholar] [CrossRef]
- Liu, X.; Tang, J.; Fu, L.; Wang, H.; Wang, S.; Xiong, C.; Wang, S.; Zhang, L. Ligand design of a novel metal-organic framework for selective capturing of Pb(II) from wastewater. J. Clean. Prod. 2023, 386, 135841. [Google Scholar] [CrossRef]
- Shee, N.K.; Kim, H.-J. Recent Developments in Porphyrin-Based Metal-Organic Framework Materials for Water Remediation under Visible-Light Irradiation. Int. J. Mol. Sci. 2024, 25, 4183. [Google Scholar] [CrossRef]
- Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Metal-organic framework derivatives for promoted capacitive deionization of oxygenated saline water. Energy Environ. Sci. 2023, 16, 1815–1820. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Kydyrbekova, A.; Devrishov, D.; Nurbala, U.; Tuyakbayeva, A.; Zhangazin, S.; Ualiyeva, R.; Kolpakova, V.; Yeremeyeva, Y.; Mkilima, T. Comparative Analysis of Natural and Synthetic Zeolite Filter Performance in the Purification of Groundwater. Water 2023, 15, 588. [Google Scholar] [CrossRef]
- Muscarella, S.M.; Badalucco, L.; Cano, B.; Laudicina, V.A.; Mannina, G. Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresour. Technol. 2021, 341, 125812. [Google Scholar] [CrossRef]
- Pan, J.; Wang, B.; Liu, S.; Liu, S.; Yan, W. Synthesis and Application of LTA Zeolite for the Removal of Inorganic and Organic Hazardous Substances from Water: A Review. Molecules 2025, 30, 554. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.O.A.; El-Kamash, A.M.; Hung, Y.-T. Applications of Nano-Zeolite in Wastewater Treatment: An Overview. Water 2022, 14, 137. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2018, 17, 195–213. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Moreside, E.; Berruti, F. High-Temperature Pyrolysis for Elimination of Per- and Polyfluoroalkyl Substances (PFAS) from Biosolids. Processes 2022, 10, 2187. [Google Scholar] [CrossRef]
- Grechanik, S.V.; Klymenko, N.A.; Bunetskyi, V.A.; Smolin, S.K.; Zabneva, O.V.; Nevynna, L.V. Production of Activated Biochar from Wood Raw Materials for Water Treatment and Water Purification Applications. J. Water Chem. Technol. 2024, 46, 512–523. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Y.; Jiao, Y.; Lv, P.; Liu, Y.; Zuo, W.; Tian, Y.; Zhang, J. Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis. Water 2024, 16, 2066. [Google Scholar] [CrossRef]
- Zuhara, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Convers. Biorefinery 2024, 14, 6053–6082. [Google Scholar] [CrossRef]
- Weerasundara, L.; Gabriele, B.; Figoli, A.; Ok, Y.-S.; Bundschuh, J. Hydrogels: Novel materials for contaminant removal in water—A review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1970–2014. [Google Scholar] [CrossRef]
- Fu, Y.; Zou, S.; Zhang, S.; Na, B.; Lin, S.; Lv, R. Supramolecular alginate-polyethyleneimine composite hydrogels for enhanced uranium adsorption. J. Radioanal. Nucl. Chem. 2023, 332, 4463–4470. [Google Scholar] [CrossRef]
- Loo, S.-L.; Vasquez, L.; Athanassiou, A.; Fragouli, D. Polymeric Hydrogels-A Promising Platform in Enhancing Water Security for a Sustainable Future. Adv. Mater. Interfaces 2021, 8, 2100580. [Google Scholar] [CrossRef]
- Mittal, H.; Al Alili, A.; Alhassan, S.M.; Naushad, M. Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int. J. Biol. Macromol. 2022, 222, 2888–2921. [Google Scholar] [CrossRef] [PubMed]
- Resende, J.F.; Reck Paulino, I.M.; Bergamasco, R.; Vieira, M.F.; Salcedo Vieira, A.M. Hydrogels produced from natural polymers: A review on its use and employment in water treatment. Braz. J. Chem. Eng. 2023, 40, 23–38. [Google Scholar] [CrossRef]
- Ge, W.J.; Cao, S.; Yu, H.; Wang, X.H. Tough polyacrylic acid hydrogels with stable swelling and active functionalities enabled by quaternized cellulose nanofibrils and iron ions for absorbent pad interlayers. Carbohydr. Polym. 2024, 345, 122491. [Google Scholar] [CrossRef]
- Le, V.T.; Joo, S.-W.; Berkani, M.; Mashifana, T.; Kamyab, H.; Wang, C.; Vasseghian, Y. Sustainable cellulose-based hydrogels for water treatment and purification. Ind. Crops Prod. 2023, 205, 117525. [Google Scholar] [CrossRef]
- Su, C.Y.; Li, D.; Sun, W.H.; Wang, L.J.; Wang, Y. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels. Food Chem. 2024, 449, 139188. [Google Scholar] [CrossRef]
- Wei, B.X.; Zou, J.; Pu, Q.Q.; Shi, K.; Xu, B.G.; Ma, Y.K. One-step preparation of hydrogel based on different molecular weights of chitosan with citric acid. J. Sci. Food Agric. 2022, 102, 3826–3834. [Google Scholar] [CrossRef]
- Duman, O.; Polat, T.G.; Diker, C.Ö.; Tunç, S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int. J. Biol. Macromol. 2020, 160, 823–835. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.J.; Zhao, Y.M.; Cui, L.J.; Xu, C.; Wu, S.P. Current Developments in Chitosan-Based Hydrogels for Water and Wastewater Treatment: A Comprehensive Review. Chemistryselect 2025, 10, e202404061. [Google Scholar] [CrossRef]
- Soleimani, S.; Heydari, A.; Fattahi, M.; Motamedisade, A. Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: Synthesis, characterization, and modelling. Ind. Crops Prod. 2023, 192, 115999. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Li, Y.; Ren, J.; Pei, C. Effect of cellulose nanocrystals on bacterial cellulose hydrogel for oil-water separation. Sep. Purif. Technol. 2023, 304, 122349. [Google Scholar] [CrossRef]
- Malik, R.; Saxena, R.; Warkar, S.G. Organic Hybrid Hydrogels: A Sustenance Technique in Waste-Water Treatment. Chemistryselect 2023, 8, e202203670. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Tanweer, M.S.; Mir, T.A.; Alam, M.; Ikram, S.; Sheikh, J.N. Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. J. Water Process Eng. 2023, 51, 103377. [Google Scholar] [CrossRef]
- Dong, Y.; Ghasemzadeh, M.; Khorsandi, Z.; Sheibani, R.; Nasrollahzadeh, M. Starch-based hydrogels for environmental applications: A review. Int. J. Biol. Macromol. 2024, 269, 131956. [Google Scholar] [CrossRef] [PubMed]
- Persano, F.; Malitesta, C.; Mazzotta, E. Cellulose-Based Hydrogels for Wastewater Treatment: A Focus on Metal Ions Removal. Polymers 2024, 16, 1292. [Google Scholar] [CrossRef]
- Wu, S.P.; Li, K.H.; Shi, W.J.; Cai, J.W. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int. J. Biol. Macromol. 2022, 210, 76–84. [Google Scholar] [CrossRef]
- Xie, B.S.; Zhang, Z.; Lu, Y.J.; Cui, L.J.; Xu, C.; Shi, W.J.; Wu, S.P. Fabrication of Sustainable Sodium Alginate/Polyethyleneimine/Polyvinyl Alcohol Multilayer Composite Electrospun Nanofiber Membrane for Efficient Cu2+ Removal. Sustainability 2024, 16, 5993. [Google Scholar] [CrossRef]
- Javed, M.; Huang, H.; Ma, Y.R.; Ettoumi, F.E.; Wang, L.; Xu, Y.Q.; El-Seedi, H.R.; Ru, Q.M.; Luo, Z.S. Construction of self-assembled nano cellulose crystals/chitosan nanobubbles composite hydrogel with improved gallic acid release property. Food Chem. 2024, 438, 137948. [Google Scholar] [CrossRef]
- Virk, M.S.; Virk, M.A.; Liang, Q.F.; Sun, Y.F.; Zhong, M.M.; Tufail, T.; Rashid, A.; Qayum, A.; Rehman, A.; Ekumah, J.N.; et al. Enhancing storage and gastroprotective viability of Lactiplantibacillus plantarum encapsulated by sodium caseinate-inulin-soy protein isolates composites carried within carboxymethyl cellulose hydrogel. Food Res. Int. 2024, 187, 114432. [Google Scholar] [CrossRef]
- Tanpichai, S.; Phoothong, F.; Boonmahitthisud, A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci. Rep. 2022, 12, 8920. [Google Scholar] [CrossRef] [PubMed]
- Hamidon, T.S.; Adnan, R.; Haafiz, M.K.M.; Hussin, M.H. Cellulose-based beads for the adsorptive removal of wastewater effluents: A review. Environ. Chem. Lett. 2022, 20, 1965–2017. [Google Scholar] [CrossRef]
- Hammouda, S.b.; Chen, Z.; An, C.; Lee, K. Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. J. Clean. Prod. 2021, 311, 127630. [Google Scholar] [CrossRef]
- Liu, H.; Shang, J.; Wang, Y.; Wang, Y.; Lan, J.; Dou, B.; Yang, L.; Lin, S. Ag/AgCl nanoparticles reinforced cellulose-based hydrogel coated cotton fabric with self-healing and photo-induced self-cleaning properties for durable oil/water separation. Polymer 2022, 255, 125146. [Google Scholar] [CrossRef]
- Ren, J.-X.; Zhu, J.-L.; Shi, S.-C.; Yin, M.-Q.; Huang, H.-D.; Li, Z.-M. In-situ structuring a robust cellulose hydrogel with ZnO/SiO2 heterojunctions for efficient photocatalytic degradation. Carbohydr. Polym. 2022, 296, 119957. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Goto, A.; Zhao, Y.; Wang, R. Uranium and lithium extraction from seawater: Challenges and opportunities for a sustainable energy future. J. Mater. Chem. A 2023, 11, 22551–22589. [Google Scholar] [CrossRef]
- Lehtonen, J.; Hassinen, J.; Kumar, A.A.; Johansson, L.-S.; Mäenpää, R.; Pahimanolis, N.; Pradeep, T.; Ikkala, O.; Rojas, O.J. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 2020, 27, 10719–10732. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, S.; Li, Z.; Na, B.; Lin, S.; Zhang, S. Tough polyamidoxime-nanocellulose supramolecular composite hydrogels for effective uranium extraction from seawater. Polymer 2024, 298, 126895. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, Z.; Lee, H.-J. Exploring Applications and Preparation Techniques for Cellulose Hydrogels: A Comprehensive Review. Gels 2024, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Mu, R.J.; Hong, X.; Ni, Y.S.; Li, Y.Z.; Pang, J.; Wang, Q.; Xiao, J.B.; Zheng, Y.F. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci. Technol. 2019, 93, 136–144. [Google Scholar] [CrossRef]
- Sugawara, A.; Asoh, T.-A.; Takashima, Y.; Harada, A.; Uyama, H. Thermoresponsive Hydrogels Reinforced with Supramolecular Cellulose Filler. Chem. Lett. 2022, 51, 145–148. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Huang, M.G.; Huang, W.Y.; Feng, J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct. 2022, 13, 170–185. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Rice straw structure changes following green pretreatment with petha wastewater for economically viable bioethanol production. Sci. Rep. 2022, 12, 10443. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nath, P.C.; Mohanta, Y.K.; Bhunia, B.; Mishra, B.; Sharma, M.; Suri, S.; Bhaswant, M.; Nayak, P.K.; Sridhar, K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int. J. Biol. Macromol. 2024, 256, 128517. [Google Scholar] [CrossRef]
- Sun, L.Y.; Han, J.; Wu, J.C.; Huang, W.R.; Li, Y.Y.; Mao, Y.L.; Wang, L.; Wang, Y. Cellulose pretreatment with inorganic salt hydrate: Dissolution, regeneration, structure and morphology. Ind. Crops Prod. 2022, 180, 114722. [Google Scholar] [CrossRef]
- Lu, Q.M.; Yu, X.J.; Yagoub, A.A.; Wahia, H.; Zhou, C.S. Application and challenge of nanocellulose in the food industry. Food Biosci. 2021, 43, 101285. [Google Scholar] [CrossRef]
- Gao, C.; Liu, S.; Edgar, K.J. Regioselective chlorination of cellulose esters by methanesulfonyl chloride. Carbohydr. Polym. 2018, 193, 108–118. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, Z.; Qu, J.; Wang, C.; Wang, A. Evaluation of Ultraviolet Light and Hydrogen Peroxide Enhanced Ozone Oxidation Treatment for the Production of Cellulose Nanofibrils. ACS Sustain. Chem. Eng. 2020, 8, 2688–2697. [Google Scholar] [CrossRef]
- Li, H.X.; Liang, J.K.; Chen, L.; Ren, M.N.; Zhou, C.S. Utilization of walnut shell by deep eutectic solvents: Enzymatic digestion of cellulose and preparation of lignin nanoparticles. Ind. Crops Prod. 2023, 192, 116034. [Google Scholar] [CrossRef]
- Shi, W.; Cai, J.; Yang, Y.; Xu, C.; Lu, J.; Wu, S. Electrospun Carboxymethyl Cellulose/Polyvinyl Alcohol Nanofiber Membranes for Enhanced Metal Ion Removal. Sustainability 2023, 15, 11331. [Google Scholar] [CrossRef]
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S.M.F. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xi, Y.; Weng, Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers 2022, 14, 3335. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Dalimunthe, N.F.; Ginting, M.H.S.; Jaafar, M.; Tan, O.O.H.; Aruan, H.K.; Herfananda, A.L. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022, 8, 568. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, S.; Chen, S. The self-assembly of dialdehyde-cellulose-nanofiber-based hydrogels with high compression resilience. Cellulose 2022, 29, 5645–5658. [Google Scholar] [CrossRef]
- Cafiso, D.; Septevani, A.A.; Noe, C.; Schiller, T.; Pirri, C.F.; Roppolo, I.; Chiappone, A. 3D printing of fully cellulose-based hydrogels by digital light processing. Sustain. Mater. Technol. 2022, 32, e00444. [Google Scholar] [CrossRef]
- Ghalhari, M.R.; Sanaei, D.; Nabizadeh, R.; Mahvi, A.H. Cellulose-based hydrogel beads derived from wastepapers: Application for organic dye adsorption. Cellulose 2023, 30, 9669–9691. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Liu, B.; Guo, H.; Wang, H.; Li, X.; Wang, L.; James, T.D. Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chem. Eng. J. 2022, 431, 134245. [Google Scholar] [CrossRef]
- Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Hou, B.X.; Hao, C.; Li, X.; Wu, J.B. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, M.; Yu, N.; Su, S.; Zhang, X. Fabrication of AgCl@tannic acid-cellulose hydrogels for NaBH4-mediated reduction of 4-nitrophenol. Cellulose 2021, 28, 3515–3529. [Google Scholar] [CrossRef]
- Han, J.; Feng, H.; Wu, J.C.; Li, Y.Y.; Zhou, Y.; Wang, L.; Luo, P.; Wang, Y. Construction of Multienzyme Co-immobilized Hybrid Nanoflowers for an Efficient Conversion of Cellulose into Glucose in a Cascade Reaction. J. Agric. Food Chem. 2021, 69, 7910–7921. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Rehman, A.; Hussain, A.; Karim, A.; Sharif, H.R.; Siddiquy, M.; Lianfu, Z. Optimization of Extraction Process and Estimation of Flavonoids from Fenugreek Using Green Extracting Deep Eutectic Solvents Coupled with Ultrasonication. Food Bioprocess Technol. 2024, 17, 887–903. [Google Scholar] [CrossRef]
- Naseem, Z.; Iqbal, J.; Zahid, M.; Shaheen, A.; Hussain, S.; Yaseen, W. Use of hydrogen-bonded supramolecular eutectic solvents for eco-friendly extraction of bioactive molecules from Cymbopogon citratus using Box-Behnken design. J. Food Meas. Charact. 2021, 15, 1487–1498. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, B.; Zhao, H.; Liao, X.; Xu, H. Preparation and performance of poly(AM/NVCL) temperature-sensitive composite hydrogels enhanced by laponite. Iran. Polym. J. 2024, 33, 555–565. [Google Scholar] [CrossRef]
- Ortega, A.; Valencia, S.; Rivera, E.; Segura, T.; Burillo, G. Reinforcement of Acrylamide Hydrogels with Cellulose Nanocrystals Using Gamma Radiation for Antibiotic Drug Delivery. Gels 2023, 9, 602. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Y.; Lei, H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022, 8, 577. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hu, Y.-J.; Bian, J.; Li, M.-F.; Hao, X.; Peng, F.; Sun, R.-C. Enhanced mechanical performance of xylan-based composite hydrogel via chain extension and semi-interpenetrating networks. Cellulose 2020, 27, 4407–4416. [Google Scholar] [CrossRef]
- Bhaladhare, S.; Das, D. Cellulose: A fascinating biopolymer for hydrogel synthesis. J. Mater. Chem. B 2022, 10, 1923–1945. [Google Scholar] [CrossRef]
- Guo, M.; Wang, J.; Zhang, C.; Zhang, X.; Xia, C.; Lin, H.; Lin, C.Y.; Lam, S.S. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water. Environ. Res. 2022, 214, 113863. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yoo, S.; Cho, S.-M.; Kelley, S.S.; Park, S. Production of single-component cellulose-based hydrogel and its utilization as adsorbent for aqueous contaminants. Int. J. Biol. Macromol. 2023, 243, 125085. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Rahmani, E.; Shamsabadipour, A.; Samadi, A.; Esmaeili, J.; Arshad, R.; Rahdar, A.; Tavangarian, F.; Pandey, S. Novel carboxymethyl cellulose based nanocomposite: A promising biomaterial for biomedical applications. Process Biochem. 2023, 130, 211–226. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, W.; Wu, Z.; Zhang, X.; Chu, Z.; Yang, Z. Preparation of cellulose-based porous adsorption materials derived from corn straw for wastewater purification. Int. J. Biol. Macromol. 2023, 233, 123595. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Salman, S.; Khan, S.A.; Amin, A.; Rahman, Z.U.; Al-Ghamdi, Y.O.; Akhtar, K.; Bakhsh, E.M.; Khan, S.B. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Qin, Z.; Sun, X.; Zhang, H.; Yu, Q.; Yao, M.; He, S.; Dong, X.; Yao, F.; et al. Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose 2020, 27, 9975–9989. [Google Scholar] [CrossRef]
- Sinha, V.; Chakma, S. Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng. 2019, 7, 103295. [Google Scholar] [CrossRef]
- Feng, Y.B.; Tan, C.P.; Zhou, C.S.; Yagoub, A.A.; Xu, B.G.; Sun, Y.H.; Ma, H.L.; Xu, X.; Yu, X.J. Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices. Food Chem. 2020, 324, 126883. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Yagoub, A.A.; Yu, X.J.; Ma, H.L.; Zhou, C.S. Effects of ultrasound, freeze-thaw pretreatments and drying methods on structure and functional properties of pectin during the processing of okra. Food Hydrocoll. 2021, 120, 106965. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Otoni, C.G.; De France, K.J.; Barud, H.S.; Lona, L.M.F.; Cranston, E.D.; Rojas, O.J. Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Mater. Today 2020, 37, 126–141. [Google Scholar] [CrossRef]
- Guo, Y.T.; Liu, W.; Wu, B.G.; Wu, P.; Duan, Y.Q.; Yang, Q.R.; Ma, H.L. Modification of garlic skin dietary fiber with twin-screw extrusion process and in vivo evaluation of Pb binding. Food Chem. 2018, 268, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Y.; Wang, M.-J. Removal of Heavy Metal Ions by Poly(vinyl alcohol) and Carboxymethyl Cellulose Composite Hydrogels Prepared by a Freeze–Thaw Method. ACS Sustain. Chem. Eng. 2016, 4, 2830–2837. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and Adsorption Properties of Novel Bacterial Cellulose/Graphene Oxide/Attapulgite Materials for Cu and Pb Ions in Aqueous Solutions. Materials 2020, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Nankawa, T.; Yunoki, S.; Sugita, T.; Nakagawa, H.; Yamada, T. Eco-friendly Carboxymethyl Cellulose Nanofiber Hydrogels Prepared via Freeze Cross-Linking and Their Applications. ACS Appl. Polym. Mater. 2020, 2, 5482–5491. [Google Scholar] [CrossRef]
- Li, M.Z.; Shi, T.; Wang, X.; Bao, Y.L.; Xiong, Z.Y.; Monto, A.R.; Jin, W.A.; Yuan, L.; Gao, R.C. Plasma-activated water promoted the aggregation of Aristichthys nobilis myofibrillar protein and the effects on gelation properties. Curr. Res. Food Sci. 2022, 5, 1616–1624. [Google Scholar] [CrossRef]
- Shi, H.B.; Zhou, T.; Wang, X.; Zou, Y.; Wang, D.Y.; Xu, W.M. Effects of the structure and gel properties of myofibrillar protein on chicken breast quality treated with ultrasound-assisted potassium alginate. Food Chem. 2021, 358, 129873. [Google Scholar] [CrossRef]
- Monto, A.R.; Li, M.Z.; Wang, X.; Wijaya, G.Y.A.; Shi, T.; Xiong, Z.Y.; Yuan, L.; Jin, W.G.; Li, J.R.; Gao, R.C. Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Crit. Rev. Food Sci. Nutr. 2022, 62, 8518–8533. [Google Scholar] [CrossRef] [PubMed]
- Pedroso-Santana, S.; Fleitas-Salazar, N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int. 2020, 69, 443–447. [Google Scholar] [CrossRef]
- Soleh Setiyawan, A.; Guerrero, R.; Acibar, C.; Alarde, C.M.; Maslog, J.; Pacilan, C.J.; Dwi Ariesyady, H.; Nastiti, A.; Roosmini, D.; Sonny Abfertiawan, M. Evaluation of Pb (II) Removal from Water Using Sodium Alginate/Hydroxypropyl Cellulose Beads. E3S Web Conf. 2020, 148, 2002. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumar, R. Fe3+ Metal Ion-Doped Ionic and Double Network Hydrogels Based on Sodium Carboxymethyl Cellulose (NaCMC): Broadband Dielectric Spectroscopy Investigations. Arab. J. Sci. Eng. 2023, 49, 1131–1139. [Google Scholar] [CrossRef]
- Jacobs, M.; Lopez, C.G.; Dobrynin, A.V. Quantifying the Effect of Multivalent Ions in Polyelectrolyte Solutions. Macromolecules 2021, 54, 9577–9586. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Hossain, L.; Wong, V.N.L.; Patti, A.F.; Garnier, G. Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties. J. Colloid Interface Sci. 2021, 599, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Cheng, T.; Xi, X.; Nie, S.; Ke, H.; Liu, Y.; Tong, S.; Chen, Z. A versatile TOCN/CGG self-assembling hydrogel for integrated wastewater treatment. Cellulose 2019, 27, 915–925. [Google Scholar] [CrossRef]
- Fan, L.L.; Xie, P.J.; Wang, Y.; Liu, X.L.; Li, Y.; Zhou, J.Z. Influences of mannosylerythritol lipid-A on the self-assembling structure formation and functional properties of heat-induced β-lactoglobulin aggregates. Food Hydrocoll. 2019, 96, 310–321. [Google Scholar] [CrossRef]
- Bai, M.; Li, C.Z.; Cui, H.Y.; Lin, L. Preparation of self-assembling Litsea cubeba essential oil/ diphenylalanine peptide micro/nanotubes with enhanced antibacterial properties against Staphylococcus aureus biofilm. LWT-Food Sci. Technol. 2021, 146, 111394. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, B.C.; Chen, Q.Y.; Peng, X.M.; Yang, D.Y.; Qiu, F.X. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Lv, Y.; Xi, X.; Xue, Y.; Jiang, F.; Zhu, X.; Dai, L.; Chen, Z. A sustainable filtering material for efficient removal of volatile organic compounds from their aqueous mixtures. Cellulose 2021, 28, 6353–6360. [Google Scholar] [CrossRef]
- Li, X.; Dai, L.; Li, W.; Wu, M.; Zhan, W.; Cheng, T.; He, P.; Xiong, C. A self-assembly all-polysaccharide hydrogel for the aquatic heavy metal ions management and utilization. Ind. Crops Prod. 2023, 203, 117236. [Google Scholar] [CrossRef]
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.I.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, K.; Yang, Y.; Kim, M.-S.; Lee, C.-H.; Zhang, R.; Xu, T.; Choi, S.-E.; Si, C. Hemicellulose-based hydrogels for advanced applications. Front. Bioeng. Biotechnol. 2023, 10, 1110004. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Peng, Q.; Yan, Y.; Ding, Y.; Wang, Z. Biomimetic, strong, and tough hydrogels by integrating cellulose nanocrystals into polymer networks. Ind. Crops Prod. 2020, 158, 112973. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, C.T.; Bao, Q.H.; Zheng, J.; Deng, D.; Duan, Y.Q.; Shen, L.Q. The physicochemical characterization, equilibrium, and kinetics of heavy metal ions adsorption from aqueous solution by arrowhead plant (Sagittaria trifolia L.) stalk. J. Food Biochem. 2018, 42, 12448. [Google Scholar] [CrossRef]
- Qin, C.C.; Guo, W.L.; Liu, Y.; Liu, Z.C.; Qiu, J.; Peng, J.B. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles-Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Jung, S.; Kim, J.; Bang, J.; Jung, M.; Park, S.; Yun, H.; Kwak, H.W. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr. Polym. 2023, 317, 121090. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.-F.; Shu, L.; Yao, J. Copper sulfide integrated functional cellulose hydrogel for efficient solar water purification. Carbohydr. Polym. 2023, 319, 121161. [Google Scholar] [CrossRef]
- Topare, N.S.; Wadgaonkar, V.S. A review on application of low-cost adsorbents for heavy metals removal from wastewater. Mater. Today Proc. 2023, 77, 8–18. [Google Scholar] [CrossRef]
- Sapuła, P.; Bialik-Wąs, K.; Malarz, K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, 15, 253. [Google Scholar] [CrossRef]
- Chen, H.; Wei, P.; Xie, Y.; Huang, X.; Cheng, Z. Acrylic-grafted nanocellulose hybrid double-network hydrogel with super-high toughness for water shutoff treatments. Chem. Eng. Res. Des. 2023, 197, 136–147. [Google Scholar] [CrossRef]
- Ning, F.; Zhang, J.; Kang, M.; Ma, C.; Li, H.; Qiu, Z. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent. J. Appl. Polym. Sci. 2020, 138, 49880. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef]
- Lamkhao, S.; Tandorn, S.; Rujijanagul, G.; Randorn, C. A practical approach using a novel porous photocatalyst/hydrogel composite for wastewater treatment. Mater. Today Sustain. 2023, 23, 100482. [Google Scholar] [CrossRef]
- Eskandani, M.; Derakhshankhah, H.; Zare, S.; Jahanban-Esfahlan, R.; Jaymand, M. Enzymatically crosslinked magnetic starch-grafted poly(tannic acid) hydrogel for “smart” cancer treatment: An in vitro chemo/hyperthermia therapy study. Int. J. Biol. Macromol. 2023, 253, 127214. [Google Scholar] [CrossRef]
- Cui, H.Y.; Cheng, Q.; Li, C.Z.; Khin, M.N.; Lin, L. Schiff base cross-linked dialdehyde β-cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on ready-to-eat foods. Food Hydrocoll. 2023, 141, 108744. [Google Scholar] [CrossRef]
- Heidarian, P.; Kaynak, A.; Paulino, M.; Zolfagharian, A.; Varley, R.J.; Kouzani, A.Z. Dynamic nanocellulose hydrogels: Recent advancements and future outlook. Carbohydr. Polym. 2021, 270, 118357. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, F.; Abdiryim, T.; Liu, X. Self-Healing Hydrogels: From Synthesis to Multiple Applications. ACS Mater. Lett. 2023, 5, 1787–1830. [Google Scholar] [CrossRef]
- Lv, X.; Huang, Y.; Hu, M.; Wang, Y.; Dai, D.; Ma, L.; Zhang, Y.; Dai, H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int. J. Biol. Macromol. 2024, 277, 134015. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Kaith, B.S.; Kaur, M.; Sharma, N.; Khullar, S. A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J. Chem. Sci. 2019, 132, 15. [Google Scholar] [CrossRef]
- Nia, M.H.; Tavakolian, M.; Kiasat, A.R.; van de Ven, T.G.M. Hybrid Aerogel Nanocomposite of Dendritic Colloidal Silica and Hairy Nanocellulose: An Effective Dye Adsorbent. Langmuir 2020, 36, 11963–11974. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Q.; Liu, Z.; Liu, J.; Zheng, X.; Pei, Y.; Tang, K. Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. Int. J. Biol. Macromol. 2019, 135, 561–568. [Google Scholar] [CrossRef]
- Huang, W.-C.; Wang, W.; Wang, W.; Hao, Y.; Xue, C.; Mao, X. A Double-Layer Polysaccharide Hydrogel (DPH) for the Enhanced Intestine-Targeted Oral Delivery of Probiotics. Engineering 2024, 34, 187–194. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Li, Z.; Zeng, W.; Meng, D.; Wang, Y.; Xiao, Z.; Wang, H.; Liang, D.; Xie, Y. Click chemistry-induced selective adsorption of cationic and anionic dyes using functionalized cellulose methacrylate hydrogels. Cellulose 2022, 29, 8843–8861. [Google Scholar] [CrossRef]
- Wei, H.; Li, S.; Liu, Z.; Chen, H.; Liu, Y.; Li, W.; Wang, G. Preparation and characterization of starch-cellulose interpenetrating network hydrogels based on sequential Diels-Alder click reaction and photopolymerization. Int. J. Biol. Macromol. 2022, 194, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Wang, B.; Zeng, X.; Wang, J.; Ren, B.; Yang, X.; Bai, X. Preparation of non-swelling hydrogels and investigation on the adsorption performance of iron ions. J. Appl. Polym. Sci. 2022, 139, e52411. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, H.; Li, S.; Wang, G.; Guo, T.; Han, H. Facile fabrication of semi-IPN hydrogel adsorbent based on quaternary cellulose via amino-anhydride click reaction in water. Int. J. Biol. Macromol. 2022, 207, 622–634. [Google Scholar] [CrossRef]
- Morozova, S.M. Recent Advances in Hydrogels via Diels–Alder Crosslinking: Design and Applications. Gels 2023, 9, 102. [Google Scholar] [CrossRef]
- Kramer, R.K.; Belgacem, M.N.; Carvalho, A.J.F.; Gandini, A. Thermally reversible nanocellulose hydrogels synthesized via the furan/maleimide Diels-Alder click reaction in water. Int. J. Biol. Macromol. 2019, 141, 493–498. [Google Scholar] [CrossRef]
- Wang, C.P.; He, G.; Meng, J.; Wang, S.M.; Kong, Y.Z.; Jiang, J.X.; Hu, R.B.; Zhou, G.K. Improved lignocellulose saccharification of a<i>Miscanthus</i>reddish stem mutant induced by heavy-ion irradiation. Glob. Change Biol. Bioenergy 2020, 12, 1066–1077. [Google Scholar] [CrossRef]
- Huang, L.R.; Zhang, W.X.; Ding, X.N.; Wu, Z.F.; Li, Y.L. Effects of dual-frequency ultrasound with different energy irradiation modes on the structural and emulsifying properties of soy protein isolate. Food Bioprod. Process. 2020, 123, 419–426. [Google Scholar] [CrossRef]
- Sayed, A.; Hany, F.; Abdel-Raouf, M.E.-S.; Mahmoud, G.A. Gamma irradiation synthesis of pectin-based biohydrogels for removal of lead cations from simulated solutions. J. Polym. Res. 2022, 29, 372. [Google Scholar] [CrossRef]
- Betraoui, A.; Seddiki, N.; Souag, R.; Guerfi, N.; Semlali, A.; Aouak, T.; Aliouche, D. Synthesis of New Hydrogels Involving Acrylic Acid and Acrylamide Grafted Agar-Agar and Their Application in the Removal of Cationic Dyes from Wastewater. Gels 2023, 9, 499. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, S.C.; Banik, N.; Islam, M.; Rahman Khan, M.M.; Jeong, J.-H. Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal. Gels 2024, 10, 785. [Google Scholar] [CrossRef]
- Masry, B.A.; Gayed, H.M.; Daoud, J.A. Gamma radiation synthesis of hydroxyethyl cellulose/acrylic acid/CYANEX 471X hydrogel for silver ions capture from acidic nitrate medium. Cellulose 2024, 31, 4329–4346. [Google Scholar] [CrossRef]
- Khiewsawai, N.; Rattanawongwiboon, T.; Ummartyotin, S. Cellulose fiber derived from sugarcane bagasse and polyethylene glycol/acrylic acid/ branched polyethylenimine-based hydrogel composite prepared by gamma irradiation: A platform for mercury (II) ions adsorption. Environ. Adv. 2024, 17, 100561. [Google Scholar] [CrossRef]
- Santoso, S.P.; Angkawijaya, A.E.; Bundjaja, V.; Kurniawan, A.; Yuliana, M.; Hsieh, C.-W.; Go, A.W.; Cheng, K.-C.; Soetaredjo, F.E.; Ismadji, S. Investigation of the influence of crosslinking activation methods on the physicochemical and Cu(II) adsorption characteristics of cellulose hydrogels. J. Environ. Chem. Eng. 2022, 10, 106971. [Google Scholar] [CrossRef]
- Li, M.; Jiang, H.N.; Zhang, L.; Yu, X.J.; Liu, H.; Yagoub, A.A.; Zhou, C.S. Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system. Ind. Crops Prod. 2020, 149, 112361. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.H.; Zou, X.B.; Xu, Y.W.; Xu, X.C. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef]
- Baiya, C.; Nannuan, L.; Tassanapukdee, Y.; Chailapakul, O.; Songsrirote, K. The Synthesis of Carboxymethyl Cellulose-Based Hydrogel from Sugarcane Bagasse Using Microwave-Assisted Irradiation for Selective Adsorption of Copper(II) Ions. Environ. Prog. Sustain. Energy 2018, 38, S157–S165. [Google Scholar] [CrossRef]
- Nishitha, M.; Narayana, B.; Sarojini, B.K.; Kodoth, A.K. Environmentally Benign Cellulose Acetate Hydrogel Beads for Solid Phase Extraction of Chlorpyrifos Pesticide from Water. Water Air Soil Pollut. 2024, 236, 23. [Google Scholar] [CrossRef]
- Roa, K.; Tapiero, Y.; Thotiyl, M.O.; Sánchez, J. Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers 2021, 13, 2265. [Google Scholar] [CrossRef]
- Jiao, X.; Jia, K.; Yu, Y.; Liu, D.; Zhang, J.; Zhang, K.; Zheng, H.; Sun, X.; Tong, Y.; Wei, Q.; et al. Nanocellulose-based functional materials towards water treatment. Carbohydr. Polym. 2025, 350, 122977. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Shen, Z. Nanocellulose Based Filtration Membrane in Industrial Waste Water Treatment: A Review. Materials 2021, 14, 5398. [Google Scholar] [CrossRef]
- Saud, A.; Saleem, H.; Zaidi, S.J. Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment. Membranes 2022, 12, 462. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Yang, W.; Hu, J.; Zhang, C.; Liu, K.; Jiang, S. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications. Environ. Res. 2023, 236, 116736. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yuan, X.; Wu, X.; Liu, L.; Guo, H.; Xu, K.; Zhang, L.; Du, G. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment. Molecules 2023, 28, 3541. [Google Scholar] [CrossRef] [PubMed]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Goswami, R.; Singh, S.; Narasimhappa, P.; Ramamurthy, P.C.; Mishra, A.; Mishra, P.K.; Joshi, H.C.; Pant, G.; Singh, J.; Kumar, G.; et al. Nanocellulose: A comprehensive review investigating its potential as an innovative material for water remediation. Int. J. Biol. Macromol. 2024, 254, 127465. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, D.; Zhao, Y.; Zhao, R.; Russell, S.J.; Ning, X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers 2022, 14, 2343. [Google Scholar] [CrossRef]
- Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. Membranes 2022, 12, 287. [Google Scholar] [CrossRef]
- James, A.; Rahman, M.R.; Said, K.A.M.; Namakka, M.; Kuok, K.K.; Khandaker, M.U.; Al-Humaidi, J.Y.; Althomali, R.H.; Rahman, M.M. Lithium Chloride-Mediated enhancement of dye removal capacity in Borneo bamboo derived nanocellulose-based nanocomposite membranes (NCMs). J. Mol. Liq. 2024, 413, 125973. [Google Scholar] [CrossRef]
- Nitodas, S.; Skehan, M.; Liu, H.; Shah, R. Current and Potential Applications of Green Membranes with Nanocellulose. Membranes 2023, 13, 694. [Google Scholar] [CrossRef] [PubMed]
- Aoudi, B.; Boluk, Y.; Gamal El-Din, M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Sci. Total Environ. 2022, 843, 156903. [Google Scholar] [CrossRef]
- Alves, D.F.; Camani, P.H.; Souza, A.G.; Rosa, D.S. A novel sustainable composite hydrogel containing nanocellulose to remove potentially toxic metals from contaminated water. Polym. Bull. 2023, 81, 5939–5966. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, J.; Qi, X.; Huang, Y.; Qiao, J.; Guo, Y.; Guo, X.; Wu, Y. Nanocellulose/carbon dots hydrogel as superior intensifier of ZnO/AgBr nanocomposite with adsorption and photocatalysis synergy for Cr(VI) removal. Int. J. Biol. Macromol. 2023, 233, 123566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yi, X.; Ouyang, J.; Wang, S.; Xu, D.; Qi, X.; Jiang, P.; Guo, X.; Wu, Y. Chitosan/carbon dots-loaded nanocellulose/layered double hydroxides composite hydrogel for effective detection and removal of iodide ion. Chem. Eng. J. 2024, 479, 147753. [Google Scholar] [CrossRef]
- Rodrigues, F.H.A.; de C. Magalhães, C.E.; Medina, A.L.; Fajardo, A.R. Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: Design, optimization, and application. Cellulose 2019, 26, 9119–9133. [Google Scholar] [CrossRef]
- Wang, G.; Lu, T.; Zhang, X.; Feng, M.; Wang, C.; Yao, W.; Zhou, S.; Zhu, Z.; Ding, W.; He, M. Structure and properties of cellulose/HAP nanocomposite hydrogels. Int. J. Biol. Macromol. 2021, 186, 377–384. [Google Scholar] [CrossRef]
- Wong, S.M.; Zulkifli, M.Z.A.; Nordin, D.; Teow, Y.H. Synthesis of Cellulose/Nano-hydroxyapatite Composite Hydrogel Absorbent for Removal of Heavy Metal Ions from Palm Oil Mill Effluents. J. Polym. Environ. 2021, 29, 4106–4119. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Jia, F.; Song, S. Adsorption of heavy metals on molybdenum disulfide in water: A critical review. J. Mol. Liq. 2019, 292, 111390. [Google Scholar] [CrossRef]
- Thangavelu, K.; Zou, L. Evaluating oil removal by amphiphilic MoS2/cellulose acetate fibrous sponge in a flow-through reactor and by artificial neural network. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100684. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Ungureanu, E.; Belosinschi, D.; Tofanica, B.-M.; Volf, I. Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels 2023, 9, 878. [Google Scholar] [CrossRef]
- Liang, N.N.; Shi, B.Q.; Hu, X.T.; Li, W.T.; Huang, X.W.; Li, Z.H.; Zhang, X.N.; Zou, X.B.; Shi, J.Y. A ternary heterostructure aptasensor based on metal-organic framework and polydopamine nanoparticles for fluorescent detection of sulfamethazine. Food Chem. 2024, 460, 140570. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Hu, W.W.; Hassan, M.M.; Zhang, Z.Z.; Chen, Q.S. A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles. J. Food Meas. Charact. 2019, 13, 259–268. [Google Scholar] [CrossRef]
- Yang, Z.K.; Zhai, X.D.; Zhang, C.C.; Shi, J.Y.; Huang, X.W.; Li, Z.H.; Zou, X.B.; Gong, Y.Y.; Holmes, M.; Povey, M.; et al. Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocoll. 2022, 123, 107187. [Google Scholar] [CrossRef]
- Wang, W.; Ni, J.; Chen, L.; Ai, Z.; Zhao, Y.; Song, S. Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int. J. Biol. Macromol. 2020, 165, 1–10. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Peng, W.; Fang, Z.; Liu, J. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chem. Eng. J. 2019, 356, 904–914. [Google Scholar] [CrossRef]
- Si, Z.; Pei, M.; Liu, Y.; Li, B.; Kang, F. Boosting the photocatalytic activity of β-FeOOH catalyst for toluene oxidation by constructing internal electric field at 0D/1D homojunction interfaces. J. Colloid Interface Sci. 2024, 654, 300–307. [Google Scholar] [CrossRef]
- Yang, X.; Ci, Y.; Zhu, P.; Chen, T.; Li, F.; Tang, Y. Preparation and characterization of cellulose-chitosan/β-FeOOH composite hydrogels for adsorption and photocatalytic degradation of methyl orange. Int. J. Biol. Macromol. 2024, 274, 133201. [Google Scholar] [CrossRef]
- Karahan, H.E.; Goh, K.; Zhang, C.; Yang, E.; Yıldırım, C.; Chuah, C.Y.; Ahunbay, M.G.; Lee, J.; Tantekin-Ersolmaz, Ş.B.; Chen, Y.; et al. MXene Materials for Designing Advanced Separation Membranes. Adv. Mater. 2020, 32, 1906697. [Google Scholar] [CrossRef]
- Zhou, W.S.; Li, C.H.; Sun, C.; Yang, X.D. Simultaneously determination of trace Cd2+ and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Food Chem. 2016, 192, 351–357. [Google Scholar] [CrossRef]
- Gopika, G.; Sathish, A.; Kumar, P.S.; Nithya, K.; Rangasamy, G. A review on current progress of graphene-based ternary nanocomposites in the removal of anionic and cationic inorganic pollutants. Chemosphere 2022, 309, 136617. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zhang, W.; Shi, J.Y.; Zou, X.B.; Li, Y.X.; Tahir, H.E.; Huang, X.W.; Li, Z.H.; Zhai, X.D.; Hu, X.T. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Gomez-Maldonado, D.; Zhang, K.; Du, H.; Whitehead, D.C.; Li, M.; Zhang, X.; Peresin, M.S. Polyethylenimine functionalized graphene oxide and cellulose nanofibril composite hydrogels: Synthesis, characterization and water pollutants adsorption. Carbohydr. Polym. Technol. Appl. 2024, 8, 100585. [Google Scholar] [CrossRef]
- Hosseini, H.; Zirakjou, A.; McClements, D.J.; Goodarzi, V.; Chen, W.-H. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J. Hazard. Mater. 2022, 421, 126752. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Al Alili, A.; Morajkar, P.P.; Alhassan, S.M. GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose—A versatile adsorbent for the treatment of dyes contaminated wastewater. Int. J. Biol. Macromol. 2021, 167, 1248–1261. [Google Scholar] [CrossRef]
- Wang, S.; Li, F.; Dai, X.; Wang, C.; Lv, X.; Waterhouse, G.I.N.; Fan, H.; Ai, S. Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater. J. Hazard. Mater. 2020, 384, 121417. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, L.; Liu, P.F.; Zhao, K.R.; Ye, S.Y.; Liang, G.X. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pan, Y.; Cai, P. Sugarcane cellulose-based composite hydrogel enhanced by g-C3N4 nanosheet for selective removal of organic dyes from water. Int. J. Biol. Macromol. 2022, 205, 37–48. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, J.; Yang, K.; Cai, P.; Xiao, H. Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Mater. Sci. Eng. C 2021, 118, 111357. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Gao, J.; Yao, J.; Zhang, Q. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coord. Chem. Rev. 2019, 398, 213016. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, M.M.; Chen, Q.S.; Ouyang, Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. J. Agric. Food Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Lu, L.; Zhu, C.; Xu, J.; Fang, Q.; Liu, R.; Shen, Y. Enhanced adsorption and photocatalytic removal of PFOA from water by F-functionalized MOF with in-situ-growth TiO2: Regulation of electron density and bandgap. Sep. Purif. Technol. 2022, 297, 121449. [Google Scholar] [CrossRef]
- Lei, C.; Gao, J.; Ren, W.; Xie, Y.; Abdalkarim, S.Y.H.; Wang, S.; Ni, Q.; Yao, J. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr. Polym. 2019, 205, 35–41. [Google Scholar] [CrossRef]
- Wu, S.P.; Shi, W.J.; Cui, L.J.; Xu, C. Enhancing contaminant rejection efficiency with ZIF-8 molecular sieving in sustainable mixed matrix membranes. Chem. Eng. J. 2024, 482, 148954. [Google Scholar] [CrossRef]
- Cui, J.; Xu, X.; Yang, L.; Chen, C.; Qian, J.; Chen, X.; Sun, D. Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem. Eng. J. 2020, 395, 125174. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, J.; Du, Y.; Zhang, M.; Yang, Z.; Su, J.; Peng, X.; Liu, X.; Sun, G.; Cui, Y. In-situ immobilization of CuMOF on sodium alginate/chitosan/cellulose nanofibril composite hydrogel for fast and highly efficient removal of Pb2+ from aqueous solutions. J. Solid State Chem. 2023, 322, 123928. [Google Scholar] [CrossRef]
- Gendy, E.A.; Ifthikar, J.; Ali, J.; Oyekunle, D.T.; Elkhlifia, Z.; Shahib, I.I.; Khodair, A.I.; Chen, Z. Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties. J. Environ. Chem. Eng. 2021, 9, 105687. [Google Scholar] [CrossRef]
- Wang, S.L.; Liang, N.N.; Hu, X.T.; Li, W.T.; Guo, Z.; Zhang, X.A.; Huang, X.W.; Li, Z.H.; Zou, X.B.; Shi, J.Y. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Zhao, B.; Fu, X.; Di, Y.; Wei, L.; Shao, G.; Cui, H.; Wei, L.; Liu, N.; An, Q.; Zhai, S. Covalent organic framework@cellulose nanofibrils@carboxymethyl cellulose composite hydrogel beads for the removal of nickel ions from aqueous solutions. J. Mol. Struct. 2024, 1312, 138619. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Gao, W.; Qing, B.; Yao, H.; Dai, W.; Zhang, H.; Shou, Q.; Liang, X.; Liu, H. In-situ bioprocessing of bacterial cellulose aerogel with covalent organic frameworks for enhanced uranium extraction. Sep. Purif. Technol. 2025, 355, 129654. [Google Scholar] [CrossRef]
- Cho, I.S.; Ooya, T. Tuned cell attachments by double-network hydrogels consisting of glycol chitosan, carboxylmethyl cellulose and agar bearing robust and self-healing properties. Int. J. Biol. Macromol. 2019, 134, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.W.; Zhao, W.Y.; Li, Z.H.; Zhang, N.; Wang, S.; Shi, J.Y.; Zhai, X.D.; Zhang, J.J.; Shen, T.T. Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness. Foods 2023, 12, 4520. [Google Scholar] [CrossRef]
- Lin, T.; Bai, Q.; Peng, J.; Xu, L.; Li, J.; Zhai, M. One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties. Carbohydr. Polym. 2018, 200, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, D.; Lin, J.; Wen, Z.; Zhang, K.; Xia, Z.; Wang, D. Preparation of double-network hydrogel consisting of chitosan, cellulose and polyacrylamide for enrichment of tetracyclines. Microchem. J. 2022, 182, 107931. [Google Scholar] [CrossRef]
- Liu, H.; Pan, B.; Wang, Q.; Niu, Y.; Tai, Y.; Du, X.; Zhang, K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. Chemosphere 2021, 263, 128240. [Google Scholar] [CrossRef]
- Cai, C.; Gao, L.; Xiong, Y. Green recyclable chitosan/carboxymethyl cellulose/sodium alginate magnetic double-network composite hydrogels for adsorption of MB and Cu2+. J. Water Process Eng. 2024, 63, 105420. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Bao, C.; Zhang, J.; Tian, Y.; Shen, J.; Feng, X. Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Sep. Purif. Technol. 2022, 300, 121865. [Google Scholar] [CrossRef]
- Li, C.; Shen, J.; Wang, J.; Bao, C.; Li, B.; Liu, L.; Wang, H.; Zhang, X. Highly compressible and macro-porous hydrogels via the synergy of cryogelation and double-network for efficient removal of Cr(VI). Int. J. Biol. Macromol. 2023, 238, 124160. [Google Scholar] [CrossRef]
- Ahmadian, M.; Jaymand, M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord. Chem. Rev. 2023, 486, 215152. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, S. Bioinspired highly anisotropic, robust and environmental resistant wood aerogel composite with semi-interpenetrating polymer networks for Cu(II) ion removal. Cellulose 2022, 29, 8353–8370. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, X.; Han, J.; Yu, L.; Chen, J.; Wu, Q.; Jiang, J. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydr. Polym. 2019, 206, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Rinoldi, C.; Lanzi, M.; Fiorelli, R.; Nakielski, P.; Zembrzycki, K.; Kowalewski, T.; Urbanek, O.; Grippo, V.; Jezierska-Woźniak, K.; Maksymowicz, W.; et al. Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules 2021, 22, 3084–3098. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, X.; Wang, P.; Wang, X.; Yang, R.; Liu, S.; Ye, Z.; Chi, B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS Appl. Bio Mater. 2020, 3, 4036–4043. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Shahrousvand, M.; Shojaei, S.; Khonakdar, H.A.; Asefnejad, A.; Goodarzi, V. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability. Int. J. Biol. Macromol. 2020, 152, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Ismaeilimoghadam, S.; Jonoobi, M.; Ashori, A.; Shahraki, A.; Azimi, B.; Danti, S. Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nano-crystals: A biodegradable and high-performance solution for adult incontinence pads. Int. J. Biol. Macromol. 2023, 253, 127118. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Wu, W.; Jing, Y.; Dai, H.; Fang, G. Nanocellulose/Poly(2-(dimethylamino)ethyl methacrylate)Interpenetrating polymer network hydrogels for removal of Pb(II) and Cu(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 474–480. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Zhang, S.; Wang, W.; Dong, W. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 2018, 200, 468–476. [Google Scholar] [CrossRef]
- Han, Z.X.; Wang, N.; Zhang, H.L.; Yang, X.Y. Heavy metal contamination and risk assessment of human exposure near an e-waste processing site. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 119–125. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Zhang, C.; Yuan, Z.; Chi, H. Real-Time Uranyl Ion Adsorption Monitoring Based on Cellulose Hydrogels. ACS Appl. Polym. Mater. 2024, 6, 13193–13201. [Google Scholar] [CrossRef]
- Chen, H.; Sharma, S.K.; Sharma, P.R.; Yeh, H.; Johnson, K.; Hsiao, B.S. Arsenic(III) Removal by Nanostructured Dialdehyde Cellulose–Cysteine Microscale and Nanoscale Fibers. ACS Omega 2019, 4, 22008–22020. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Nanocellulose-Based Materials for Water Pollutant Removal: A Review. Int. J. Mol. Sci. 2024, 25, 8529. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.; Li, J.; Kamal, N.; Mahmoud, E.; Omara, A.E.D.; Du, D.L. Assessing and Predicting Soil Quality in Heavy Metal-Contaminated Soils: Statistical and ANN-Based Techniques. J. Soil Sci. Plant Nutr. 2023, 23, 6510–6526. [Google Scholar] [CrossRef]
- Nath, P.C.; Debnath, S.; Sharma, M.; Sridhar, K.; Nayak, P.K.; Inbaraj, B.S. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Hu, R.; Zhao, X.; Liu, T.; Bai, Z. A novel chitosan/cellulose phosphonate composite hydrogel for ultrafast and efficient removal of Pb(II) and Cu(II) from wastewater. Carbohydr. Polym. 2024, 336, 122104. [Google Scholar] [CrossRef]
- Zeng, R.; Zheng, J.; Zuo, Y.; Xiao, C.; Zhu, Y. Synergistic and simultaneous removal of heavy metal ions over waste bamboo shoot particles encapsulated carboxymethyl cellulose/gelatin composite hydrogel. Int. J. Biol. Macromol. 2024, 283, 137578. [Google Scholar] [CrossRef]
- Abdul Rahman, A.S.; Fizal, A.N.S.; Khalil, N.A.; Ahmad Yahaya, A.N.; Hossain, M.S.; Zulkifli, M. Fabrication and Characterization of Magnetic Cellulose–Chitosan–Alginate Composite Hydrogel Bead Bio-Sorbent. Polymers 2023, 15, 2494. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, M.; Liu, H.; Lei, H.; Jian, B.; Liu, R.; Li, X.; Wang, Y.; Zhou, B. Preparation of green magnetic hydrogel from soybean residue cellulose for effective and rapid removal of copper ions from wastewater. J. Environ. Chem. Eng. 2022, 10, 108213. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- He, X.; Jia, H.; Sun, N.; Hou, M.; Tan, Z.; Lu, X. Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag+. Int. J. Biol. Macromol. 2022, 213, 955–966. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhou, R.; Qiao, J.; Liu, J.; Cai, R.; Liu, J.; Rong, J.; Chen, Y. Porous sodium alginate/cellulose nanofiber composite hydrogel microspheres for heavy metal removal in wastewater. Int. J. Biol. Macromol. 2024, 278, 135000. [Google Scholar] [CrossRef]
- Kalaiselvi, K.; Mohandoss, S.; Ahmad, N.; Khan, M.R.; Manoharan, R.K. Adsorption of Pb2+ Ions from Aqueous Solution onto Porous Kappa-Carrageenan/Cellulose Hydrogels: Isotherm and Kinetics Study. Sustainability 2023, 15, 9534. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, B.; Ma, J.; Zhu, R. Preparation and characterization of carboxymethyl cellulose/chitosan/alginic acid hydrogels with adjustable pore structure for adsorption of heavy metal ions. Eur. Polym. J. 2022, 179, 111577. [Google Scholar] [CrossRef]
- Yang, S.C.; Liao, Y.; Karthikeyan, K.G.; Pan, X.J. Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals. Environ. Pollut. 2021, 286, 117324. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, Q.; Xu, X.; Zhang, X.; Su, Y.; Yue, Q.; Gao, B. A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol. Carbohydr. Polym. 2018, 190, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Song, Y.-L.; Yang, H.-R.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R. Carboxymethyl cellulose-based cryogels for efficient heavy metal capture: Aluminum-mediated assembly process and sorption mechanism. Int. J. Biol. Macromol. 2020, 164, 3275–3286. [Google Scholar] [CrossRef]
- Han, S.Q.; Xie, H.H.; Zhang, L.; Wang, X.H.; Zhong, Y.; Shen, Y.T.; Wang, H.L.; Hao, C. High-performance polyethylenimine-functionalized lignin/silica porous composite microsphere for the removal of hexavalent chromium, phosphate and Congo red from aqueous solutions. Ind. Crops Prod. 2023, 194, 116289. [Google Scholar] [CrossRef]
- Thakur, N.; Thakur, N. Removal of organic dyes and free radical assay by encapsulating polyvinylpyrrolidone and Tinospora Cordifolia in dual (Co–Cu) doped TiO2 nanoparticles. Environ. Pollut. 2023, 335, 122229. [Google Scholar] [CrossRef]
- Hussain, S.; Salman, M.; Farooq, U.; Zahid, F.; Yasmeen, S.; Al-Ahmary, K.M.; Ahmed, M. Fabrication of carboxymethyl cellulose/graphene oxide/ZnO composite hydrogel for efficient removal of fuchsin dye from aqueous media. Int. J. Biol. Macromol. 2024, 277, 134104. [Google Scholar] [CrossRef]
- Qiao, A.; Cui, M.; Huang, R.; Ding, G.; Qi, W.; He, Z.; Klemeš, J.J.; Su, R. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydr. Polym. 2021, 272, 118471. [Google Scholar] [CrossRef]
- Jamwal, P.; Chauhan, G.S.; Kumar, P.; Kumari, B.; Kumar, K.; Chauhan, S. A study in the synthesis of new Pinus wallichiana derived spherical nanocellulose hydrogel and its evaluation as malachite green adsorbent. Sustain. Chem. Pharm. 2023, 32, 100950. [Google Scholar] [CrossRef]
- Benhalima, T.; Sadi, A.; Dairi, N.; Ferfera-Harrar, H. Multifunctional carboxymethyl cellulose-dextran sulfate/AgNPs@zeolite hydrogel beads for basic red 46 and methylene blue dyes removal and water disinfection control. Sep. Purif. Technol. 2024, 342, 127001. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, D.; Xu, W.; Ding, W.-P.; Zhu, Z.-Z.; He, J.-R.; Cheng, S.-Y. Polysaccharide-Based Hydrogels Derived from Cellulose: The Architecture Change from Nanofibers to Hydrogels for a Putative Dual Function in Dye Wastewater Treatment. J. Agric. Food Chem. 2020, 68, 9725–9732. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Truong, T.M.; Nguyen, N.T.; Dinh, D.N.; Hollmann, D.; Nguyen, M.N. Advanced cellulose-based hydrogel TiO2 catalyst composites for efficient photocatalytic degradation of organic dye methylene blue. Sci. Rep. 2024, 14, 10935. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, S.; Vishalakshi, B. Development of banana pseudo stem cellulose fiber based magnetic nanocomposite as an adsorbent for dye removal. Int. J. Biol. Macromol. 2024, 278, 134877. [Google Scholar] [CrossRef]
- Xu, H.Y.; Yang, X.; Yu, R.; Zuo, T.; Liu, Q.; Jia, S.; Jia, L.Y. Adsorption properties of cellulose-derived hydrogel and magnetic hydrogels from Sophora flavescens on Cu2+ and Congo red. Int. J. Biol. Macromol. 2024, 274, 133209. [Google Scholar] [CrossRef]
- Salama, A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol. 2018, 106, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Chen, L. A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Carbohydr. Polym. 2019, 210, 314–321. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, S.; Duan, H.; He, J.; Luo, Y. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies. Int. J. Biol. Macromol. 2023, 231, 123213. [Google Scholar] [CrossRef]
- Kasbaji, M.; Mennani, M.; Grimi, N.; Oubenali, M.; Mbarki, M.; El Zakhem, H.; Moubarik, A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int. J. Biol. Macromol. 2023, 239, 124288. [Google Scholar] [CrossRef]
- Medeiros, D.C.C.d.S.; Nzediegwu, C.; Benally, C.; Messele, S.A.; Kwak, J.-H.; Naeth, M.A.; Ok, Y.S.; Chang, S.X.; Gamal El-Din, M. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. Sci. Total Environ. 2022, 809, 151120. [Google Scholar] [CrossRef]
- Azam, S.M.R.; Ma, H.L.; Xu, B.G.; Devi, S.; Siddique, M.A.; Stanley, S.L.; Bhandari, B.; Zhu, J.S. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci. Technol. 2020, 97, 417–432. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Lin, X.; Li, S.F.Y.; Jiang, N.; Liu, Y.; Guo, H.; Li, Y. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem. Eng. J. 2022, 427, 130913. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Zhang, X.; Huang, Y.; Ma, Q.; Guo, X.; Wu, Y. β-Cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel for enhanced adsorption and fluorescence detection of levofloxacin. Carbohydr. Polym. 2024, 340, 122306. [Google Scholar] [CrossRef]
- Luo, Q.; He, S.; Huang, Y.; Lei, Z.; Qiao, J.; Li, Q.; Xu, D.; Guo, X.; Wu, Y. Non-toxic fluorescent molecularly imprinted hydrogel based on wood-derived cellulose nanocrystals and carbon dots for efficient sorption and sensitive detection of tetracycline. Ind. Crops Prod. 2022, 177, 114528. [Google Scholar] [CrossRef]
- Tie, L.; Ke, Y.; Gong, Y.; Zhang, W.-x.; Deng, Z. Nanocellulose fine-tuned poly(acrylic acid) hydrogel for enhanced diclofenac removal. Int. J. Biol. Macromol. 2022, 213, 1029–1036. [Google Scholar] [CrossRef]
- Sinha, V.; Chakma, S. Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution. Environ. Technol. Innov. 2020, 17, 100620. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020, 6, e04087. [Google Scholar] [CrossRef]
- Lee, J.W.; Han, J.; Choi, Y.-K.; Park, S.; Lee, S.H. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions. Int. J. Biol. Macromol. 2023, 249, 126053. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.Y.; Li, L.; Cai, J.R. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem. 2023, 426, 136608. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhang, X.; Qi, X.; Wang, C.; Yuan, Y.; Xie, X.; Qiao, J.; Guo, X.; Wu, Y. Enhanced sorption and fluorescent detection of bisphenol A by using sodium alginate/cellulose nanofibrils/ZIF-8 composite hydrogel. Int. J. Biol. Macromol. 2024, 271, 132198. [Google Scholar] [CrossRef]
- Rodrigues, F.; Faria, M.; Mendonça, I.; Sousa, E.; Ferreira, A.; Cordeiro, N. Efficacy of bacterial cellulose hydrogel in microfiber removal from contaminated waters: A sustainable approach to wastewater treatment. Sci. Total Environ. 2024, 919, 170846. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lee, C.-S.; Zhang, K.; Alhamzani, A.G.; Hsiao, B.S. Sodium Alginate–Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal. Nanomaterials 2023, 13, 1161. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Qi, X.; Ouyang, J.; Jiang, P.; Guo, X.; Wu, Y. Lignin/carbon dots-embedded cellulose nanofibrils hydrogel: An effective, inexpensive and versatile platform for doxycycline adsorption and determination. Ind. Crops Prod. 2024, 220, 119300. [Google Scholar] [CrossRef]
- Luo, Q.; Ren, T.; Lei, Z.; Huang, Y.; Huang, Y.; Xu, D.; Wan, C.; Guo, X.; Wu, Y. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline. Chem. Eng. J. 2022, 427, 131738. [Google Scholar] [CrossRef]
- Barragan Medina, Y.P.; Alvarez, V.A.; Mendoza Zélis, P.; Gonzalez, J.S. Ecofriendly magnetic gels beads based on carboxymethylcellulose and iron oxides for diclofenac adsorption. Discov. Chem. Eng. 2024, 4, 22. [Google Scholar] [CrossRef]
- Tie, L.; Zhang, W.-X.; Deng, Z. Composite hydrogel derived iron/nitrogen co-doped carbon for bisphenol A removal. Sep. Purif. Technol. 2024, 340, 126752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, Y.; Gao, S.; Wu, S. Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications. Separations 2025, 12, 72. https://doi.org/10.3390/separations12030072
Zhang Z, Lu Y, Gao S, Wu S. Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications. Separations. 2025; 12(3):72. https://doi.org/10.3390/separations12030072
Chicago/Turabian StyleZhang, Ziao, Yujie Lu, Shoujian Gao, and Shuping Wu. 2025. "Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications" Separations 12, no. 3: 72. https://doi.org/10.3390/separations12030072
APA StyleZhang, Z., Lu, Y., Gao, S., & Wu, S. (2025). Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications. Separations, 12(3), 72. https://doi.org/10.3390/separations12030072