Cyclone Shapes for Sand and Microplastic Separation: Efficiency and Reynolds Number Relationships
Abstract
:1. Introduction
2. Analysis Constructs and Methods
2.1. Cyclone Shape Design and Method
2.2. Analytical Mesh Structure
2.3. Governing Equations
2.4. Theoretical Efficiency of a Cyclone
3. Results and Discussion
3.1. Tangential Velocity
3.2. Pressure Drop
3.3. Reynolds Number
3.4. Separation Efficiency
4. Conclusions
- Type B demonstrated superior sand separation efficiency, reaching nearly 100%, and the effective separation of Styrofoam and other plastics (PET, PP, PU) at lower outlet velocities (5–7 m/s).
- Type C showed higher sand separation efficiency, up to 100%, and effective separation of Styrofoam and plastics (PET, PP, PU) at moderate outlet velocities (5–10 m/s) but efficiency declined at higher speeds (10–11 m/s).
- Increasing the outlet velocities beyond 8 m/s for Type B and 10–11 m/s for Type C led to reduced separation efficiency, which we attributed to increased sand particles flowing into the plastic outlet.
- Each cyclone shape exhibited an optimal Reynolds number range for maximizing particle separation efficiency, underscoring the importance of matching operational speeds to these ranges.
- Cone-shaped cyclone separators show potential for coastal applications, with Type B and Type C showing the ability to effectively collect Styrofoam and microplastics, suggesting further optimization through structural adjustments like cone angle and cyclone length.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Zhang, Y.; Zhang, X.; Zheng, H.; Wei, G.; Wang, M. A Fluid-Structure Interaction Method for the Elastohydrodynamic Lubrication Characteristics of Rubber-Plastic Double-Layer Water-Lubricated Journal Bearings. Lubricants 2023, 11, 240. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic Polymers in the Marine Environment: A Rapidly Increasing, Long-Term Threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G.B. The Pollution of the Marine Environment by Plastic Debris: A Review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, A.; Kundu, P.; Bhattacharya, S.; Dutta, N. Microplastic Contamination in Wastewater: Sources, Distribution, Detection and Remediation through Physical and Chemical-Biological Methods. Sci. Total Environ. 2024, 916, 170254. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Li, X.; Yu, W.; Du, J.; Wang, D.; Yang, X.; Zhou, C.; Wang, J.; Yuan, H. A High-Efficiency Mini-Hydrocyclone for Microplastic Separation from Water via Air Flotation. J. Water Process Eng. 2022, 49, 103084. [Google Scholar] [CrossRef]
- He, L.; Ji, L.; Sun, X.; Chen, S.; Kuang, S. Investigation of Mini-Hydrocyclone Performance in Removing Small-Size Microplastics. Particuology 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Fu, S.; Qian, Y.; Yuan, H.; Fang, Y. Effect of Cone Angles of a Hydrocyclone for the Separation of Waste Plastics with Low Value of Density Difference. Waste Manag. 2022, 140, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Thiemsakul, D.; Piemjaiswang, R.; Sema, T.; Feng, Y.; Piumsomboon, P.; Chalermsinsuwan, B. Effect of Hydrocyclone Design in Microplastics-Water Separation by Using Computational Fluid Dynamics Simulations. Results Eng. 2024, 22, 102034. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Shim, W.J. Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea. Arch. Environ. Contam. Toxicol. 2015, 69, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Nationwide Monitoring of Microplastics in Bivalves from the Coastal Environment of Korea. Environ. Pollut. 2021, 270, 116175. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, S. Seasonal Distribution Characteristics of Microplastics in the Sand Beach of the Daebu Island, Gyeonggi-Do. J. Korean Soc. Environ. Anal. 2015, 18, 221–231. [Google Scholar]
- Lee, J.; Lee, J.S.; Jang, Y.C.; Hong, S.Y.; Shim, W.J.; Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Kang, D.; et al. Distribution and Size Relationships of Plastic Marine Debris on Beaches in South Korea. Arch. Environ. Contam. Toxicol. 2015, 69, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Shim, W.J.; Han, G.M.; Rani, M.; Song, Y.K.; Hong, S.H. Widespread Detection of a Brominated Flame Retardant, Hexabromocyclododecane, in Expanded Polystyrene Marine Debris and Microplastics from South Korea and the Asia-Pacific Coastal Region. Environ. Pollut. 2017, 231, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Volume, Shape, and Roundness of Rock Particles on JSTOR. Available online: https://www.jstor.org/stable/30058012?seq=1 (accessed on 15 July 2024).
- Kamnis, S.; Gu, S. Study of In-Flight and Impact Dynamics of Nonspherical Particles from HVOF Guns. J. Therm. Spray Technol. 2010, 19, 31–41. [Google Scholar] [CrossRef]
- Haider, A.; Levenspiel, O. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technol. 1989, 58, 63–70. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Dhanorkar, M.; Mishra, I.; Kirdat, A.; Bhatwadekar, S.; Sawant, R.; Pandey, A. Numerical Simulation of Hydro-Cyclone Separator Used for Separation of Highly Dense Suspended Particulate Matter. Mater. Today Proc. 2022, 59, 85–92. [Google Scholar] [CrossRef]
- El-Batsh, H.M. Improving Cyclone Performance by Proper Selection of the Exit Pipe. Appl. Math. Model. 2013, 37, 5286–5303. [Google Scholar] [CrossRef]
- Feng, M.; Gui, C.; Zhou, Y.; Lei, Z. Numerical Study on Performance Optimization and Flow Mechanism of a New Cyclone Separator. Green Chem. Eng. 2024. [Google Scholar] [CrossRef]
- Prasanna, N.; Subramanian, K.; Ajay, S.; Rajagopal, T.; Vigneshwaran, V. CFD Study on the Performance of Reducing Pressure Drop Holes in Cyclone Separator. Mater. Today Proc. 2021, 43, 1960–1968. [Google Scholar] [CrossRef]
Cyclone Separator Type | Type A | Type B | Type C |
---|---|---|---|
Node | 274,335 | 413,289 | 677,585 |
Minimum Orthogonal Quality | 0.283797 | 0.239026 | 0.201776 |
Mesh Type | Polyhedra | Polyhedra | Polyhedra |
Material | Particle Size (mm) | Density (kg/m3) | Shape Factor |
---|---|---|---|
Sand | 2 | 1650 | 1 |
Styrofoam | 3 | 10 | 0.1 |
PET | 1340 | ||
PP | 900 | ||
PU | 1120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, I.; Seo, W.; Im, S.; Kim, K. Cyclone Shapes for Sand and Microplastic Separation: Efficiency and Reynolds Number Relationships. Separations 2024, 11, 222. https://doi.org/10.3390/separations11080222
Kang I, Seo W, Im S, Kim K. Cyclone Shapes for Sand and Microplastic Separation: Efficiency and Reynolds Number Relationships. Separations. 2024; 11(8):222. https://doi.org/10.3390/separations11080222
Chicago/Turabian StyleKang, Insun, Wonjun Seo, Seokyeon Im, and Kwonse Kim. 2024. "Cyclone Shapes for Sand and Microplastic Separation: Efficiency and Reynolds Number Relationships" Separations 11, no. 8: 222. https://doi.org/10.3390/separations11080222
APA StyleKang, I., Seo, W., Im, S., & Kim, K. (2024). Cyclone Shapes for Sand and Microplastic Separation: Efficiency and Reynolds Number Relationships. Separations, 11(8), 222. https://doi.org/10.3390/separations11080222