Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. UHPLC-HRMS Analysis
2.4. Data Processing
3. Results and Discussion
3.1. Optimized UHPLC Parameters
3.1.1. Optimizing Gradient Slope
3.1.2. Optimizing Concentration of the Ion-Pairing Reagent TFA
3.1.3. Optimizing Temperature
3.1.4. Final UHPLC Method
3.2. Relative UV Quantification
3.3. High-Resolution Mass Spectrometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dahlke, C.; Lunemann, S.; Kasonta, R.; Kreuels, B.; Schmiedel, S.; Ly, M.L.; Fehling, S.K.; Strecker, T.; Becker, S.; Altfeld, M.; et al. Comprehensive Characterization of Cellular Immune Responses Following Ebola Virus Infection. J. Infect. Dis. 2017, 215, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Nathan, A.; Rossin, E.J.; Kaseke, C.; Park, R.J.; Khatri, A.; Koundakjian, D.; Urbach, J.M.; Singh, N.K.; Bashirova, A.; Tano-Menka, R.; et al. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell 2021, 184, 4401–4413.e10. [Google Scholar] [CrossRef] [PubMed]
- Tran, E.; Robbins, P.F.; Rosenberg, S.A. ‘Final common pathway’ of human cancer immunotherapy: Targeting random somatic mutations. Nat. Immunol. 2017, 18, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Pira, G.L.; Ivaldi, F.; Moretti, P.; Manca, F. High Throughput T Epitope Mapping and Vaccine Development. J. Biomed. Biotechnol. 2010, 2010, 325720. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, M.T.; de Beukelaar, J.W.; Burgers, P.C.; Luider, T.M.; Kraan, J.; Smitt, P.A.S.; Gratama, J.W. Contamination of Synthetic HuD Protein Spanning Peptide Pools with a CMV-Encoded Peptide. Cytom. Part A 2008, 73a, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Schnatbaum, K.; Holenya, P.; Pfeil, S.; Drosch, M.; Eckey, M.; Reimer, U.; Wenschuh, H.; Kern, F. An Overview of Peptides and Peptide Pools for Antigen-Specific Stimulation in T-Cell Assays. Methods Mol. Biol. 2024, 2768, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Siahaan, T.J.; Schöneich, C. Chemical Pathways of Peptide and Protein Degradation. In Pharmaceutical Formulation Development of Peptides and Proteins, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 79–106. [Google Scholar]
- Abbas, I.M.; Hoffmann, H.; Montes-Bayón, M.; Weller, M.G. Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples. Anal. Bioanal. Chem. 2018, 410, 3835–3846. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, K.; Potesil, D.; Zdráhal, Z. Suppression of Peptide Sample Losses in Autosampler Vials. J. Proteome Res. 2013, 12, 3057–3062. [Google Scholar] [CrossRef] [PubMed]
- Krokhin, O.V.; Antonovici, M.; Ens, W.; Wilkins, J.A.; Standing, K.G. Deamidation of -Asn-Gly-sequences during sample preparation for proteomics: Consequences for MALDI and HPLC-MALDI analysis. Anal. Chem. 2006, 78, 6645–6650. [Google Scholar] [CrossRef]
- Weller, M.G. The Protocol Gap. Method. Protocol. 2021, 4, 12. [Google Scholar] [CrossRef]
- Zolg, D.P.; Wilhelm, M.; Schmidt, T.; Médard, G.; Zerweck, J.; Knaute, T.; Wenschuh, H.; Reimer, U.; Schnatbaum, K.; Kuster, B. ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides. Mol. Cell Proteom. 2018, 17, 1850–1863. [Google Scholar] [CrossRef]
- Kasicka, V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024, 45, 165–198. [Google Scholar] [CrossRef] [PubMed]
- Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104–122. [Google Scholar] [CrossRef]
- Meyer, B.; Papasotiriou, D.G.; Karas, M. 100% protein sequence coverage: A modern form of surrealism in proteomics. Amino Acids 2011, 41, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Schäfer, P.; Störtzel, M.; Vogt, S.; Weinmann, W. Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J. Chromatogr. B 2002, 773, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Larger, P.J.; Breda, M.; Fraier, D.; Hughes, H.; James, C.A. Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis. J. Pharm. Biomed. 2005, 39, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Greer, B.; Chevallier, O.; Quinn, B.; Botana, L.M.; Elliott, C.T. Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC-Trend Anal. Chem. 2021, 141, 116284. [Google Scholar] [CrossRef]
- Gros, M.; Petrovic, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 2006, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Tsukada, K. Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J. Chromatogr. A 2002, 943, 39–46. [Google Scholar] [CrossRef]
- Zrostlíková, J.; Hajslová, J.; Poustka, J.; Begany, P. Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J. Chromatogr. A 2002, 973, 13–26. [Google Scholar] [CrossRef]
- Alder, L.; Lüderitz, S.; Lindtner, K.; Stan, H.J. The ECHO technique -: The more effective way of data evaluation in liquid chromatography-tandem mass spectrometry analysis. J. Chromatogr. A 2004, 1058, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Strand, D.H. 13C labelled internal standards—A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A 2011, 1218, 9366–9374. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, I.; Targoni, O.; Zhang, W.J.; Sundararaman, S.; Lehmann, P.V. How frequently are predicted peptides actually recognized by CD8 cells? Cancer Immunol. Immun. 2016, 65, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Moldovan, I.; Targoni, O.S.; Subbramanian, R.A.; Lehmann, P.V. How much of Virus-Specific CD8 T Cell Reactivity is Detected with a Peptide Pool when Compared to Individual Peptides? Viruses 2012, 4, 2636–2649. [Google Scholar] [CrossRef] [PubMed]
- Patiny, L.; Borel, A. ChemCalc: A Building Block for Tomorrow’s Chemical Infrastructure. J. Chem. Inf. Model. 2013, 53, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Horvath, C.G.; Lipsky, S.R. Peak Capacity in Chromatography. Anal. Chem. 1967, 39, 1893. [Google Scholar] [CrossRef]
- Giddings, J.C. Maximum Number of Components Resolvable by Gel Filtration and Other Elution Chromatographic Methods. Anal. Chem. 1967, 39, 1027–1028. [Google Scholar] [CrossRef]
- Neue, U.D. Theory of peak capacity in gradient elution. J. Chromatogr. A 2005, 1079, 153–161. [Google Scholar] [CrossRef]
- Davis, J.M.; Giddings, J.C. Statistical-Theory of Component Overlap in Multicomponent Chromatograms. Anal. Chem. 1983, 55, 418–424. [Google Scholar] [CrossRef]
- Wang, X.L.; Stoll, D.R.; Schellinger, A.P.; Carr, P.W. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: Fixed column format. Anal. Chem. 2006, 78, 3406–3416. [Google Scholar] [CrossRef]
- Dolan, J.W.; Snyder, L.R.; Djordjevic, N.M.; Hill, D.W.; Waeghe, T.J. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations. J. Chromatogr. A 1999, 857, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.R. The Practical Application of the Linear-Solvent-Strength Model; Wiley-Interscience: Hoboken, NJ, USA, 2007; p. 33. [Google Scholar]
- Petersson, P.; Frank, A.; Heaton, J.; Euerby, M.R. Maximizing peak capacity and separation speed in liquid chromatography. J. Sep. Sci. 2008, 31, 2346–2357. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mehok, A.R.; Mant, C.T.; Hodges, R.S. Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited. J. Chromatogr. A 2004, 1043, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Petrovic, K.; Wicar, S. Efficacy of Corrections Applied in Resolution of Overlapping Chromatographic Peaks by Perpendicular Drop Method. J. Chromatogr. 1971, 55, 221–229. [Google Scholar] [CrossRef]
Temperature [°C] | Peak Width (FWHM) [min] | Sample Peak Capacity (PCS) |
---|---|---|
35 | 0.310 | 242 |
40 | 0.300 | 250 |
45 | 0.288 | 260 |
50 | 0.283 | 266 |
55 | 0.277 | 272 |
60 | 0.275 | 274 |
UHPLC Parameter | Optimized Value |
---|---|
Gradient slope | 0.4% B/min |
Initial %B | 4 |
Final %B (except washing step) | 44 |
Trifluoroacetic acid (TFA) | 0.05/0.04% (v/v) in eluent A/B |
Temperature | 55 °C |
Flow rate | 6 µL/min |
Peptide Name | Sequence | p/v 1 | Peak Area Perp. Drop 2 [µAU × min] | RSD Peak Area Perp. Drop [%] | Peak Area Peak Fitting 2 [µAU × min] | RSD Peak Area Peak Fitting [%] |
---|---|---|---|---|---|---|
8 * | KTGGPIYKR | n.a. | / | / | 1.412 | 0.6 |
14 * | AVFDRKSDAK | n.a. | / | / | 0.501 | 0.9 |
10 | ILRGSVAHK | 24.1 | 0.939 | 0.2 | 0.979 | 0.6 |
12 | RLRAEAQVK | 11.9 | 0.514 | 0.1 | 0.563 | 0.3 |
11 | RVRAYTYSK | 24.5 | 1.224 | 0.1 | 1.261 | 0.4 |
32 | TPRVTGGGAM | 27.6 | 0.685 | 0.2 | 0.737 | 0.2 |
28 | YPLHEQHGM | 60.2 | 1.358 | 0.8 | 1.527 | 0.2 |
16 | ATIGTAMYK | 31.7 | 0.960 | 0.8 | 1.028 | 0.2 |
25 | SRYWAIRTR | 51.9 | 1.922 | 0.1 | 2.144 | 0.2 |
1 | VSDGGPNLY | 22.0 | 1.000 | 0.2 | 1.000 | 0.5 |
21 | RAKFKQLL | 3.5 | 0.721 | 0.3 | 0.819 | 0.1 |
9 | RVLSFIKGTK | 4.1 | 0.897 | 0.2 | 0.898 | 0.2 |
29 | IPSINVHHY | 20.1 | 2.021 | 0.1 | 2.228 | 0.3 |
22 | FLRGRAYGL | 35.8 | 1.208 | 0.4 | 1.194 | 0.1 |
13 * | SIIPSGPLK | 1.5 | 1.181 | 0.4 | 1.464 | 0.2 |
23 * | QAKWRLQTL | 1.6 | 1.749 | 0.3 | 1.456 | 0.3 |
19 * | RPPIFIRRL | 1.2 | 0.691 | 2.0 | 1.168 | 0.3 |
18 * | LPFDKTTVM | 1.5 | 1.461 | 0.8 | 1.187 | 0.2 |
20 | ELRSRYWAI | 7.5 | 2.270 | 0.2 | 2.229 | 0.3 |
15 | IVTDFSVIK | 8.8 | 1.162 | 0.2 | 1.099 | 0.2 |
17 | DYCNVLNKEF | 13.0 | 1.102 | 0.2 | 0.995 | 0.3 |
26 | ASCMGLIY | 11.0 | 1.343 | 0.2 | 1.123 | 0.3 |
27 | RRIYDLIEL | 8.3 | 0.818 | 0.4 | 0.788 | 0.2 |
24 | SDEEEAIVAYTL | 19.4 | 1.374 | 0.3 | 1.342 | 0.1 |
7 | NLVPMVATV | 13.1 | 0.989 | 0.2 | 0.918 | 0.2 |
4 | FMYSDFHFI | 52.2 | 2.184 | 0.1 | 2.106 | 0.2 |
31 | EFFWDANDIY | 40.7 | 2.924 | 0.2 | 2.804 | 0.2 |
30 | EENLLDFVRF | 10.8 | 0.867 | 0.1 | 0.876 | 0.2 |
6 | GLCTLVAML | 17.4 | 0.552 | 0.4 | 0.410 | 0.2 |
3 | GILGFVFTL | 45.0 | 0.895 | 1.0 | 0.825 | 0.8 |
2 ** | CTELKLSDY | / | / | / | / | / |
5 ** | CLGGLLTMV | / | / | / | / | / |
8+14 | see above | 32.2 | 1.891 | 0.2 | 1.912 | 0.4 |
13+23 | see above | 22.1 | 2.947 | 0.2 | 2.920 | 0.2 |
19+18 | see above | 5.6 | 2.152 | 0.1 | 2.355 | 0.2 |
Peptide | tR (UV) [min] | Ion | Calc. m/z [26] | Exp. m/z | Δm/z | Mass Error [ppm] |
---|---|---|---|---|---|---|
8 | 11.18 | [M+2H]2+ | 510.3035 | 510.3034 | −0.0001 | −0.1 |
14 | 11.18 | [M+2H]2+ | 568.8066 | 568.8066 | 0.0000 | 0.1 |
10 | 12.79 | [M+2H]2+ | 490.8036 | 490.8042 | 0.0006 | 1.2 |
12 | 13.77 | [M+2H]2+ | 535.8251 | 535.8254 | 0.0003 | 0.6 |
11 | 14.57 | [M+2H]2+ | 572.3171 | 572.3171 | 0.0000 | 0.0 |
32 | 20.47 | [M+2H]2+ | 473.7424 | 473.7426 | 0.0002 | 0.5 |
28 | 22.27 | [M+2H]2+ | 556.2531 | 556.2537 | 0.0006 | 1.1 |
16 | 27.09 | [M+2H]2+ | 478.2495 | 478.2496 | 0.0001 | 0.2 |
25 | 28.37 | [M+2H]2+ | 604.8360 | 604.8366 | 0.0006 | 1.0 |
1 | 29.65 | [M+H]+ | 921.4312 | 921.4310 | −0.0002 | −0.3 |
21 | 31.57 | [M+2H]2+ | 502.3242 | 502.3245 | 0.0003 | 0.6 |
9 | 32.14 | [M+2H]2+ | 574.8611 | 574.8615 | 0.0004 | 0.6 |
29 | 33.49 | [M+2H]2+ | 540.2853 | 540.2858 | 0.0005 | 1.0 |
22 | 36.04 | [M+2H]2+ | 526.8036 | 526.8040 | 0.0004 | 0.7 |
13 | 39.40 | [M+2H]2+ | 456.2817 | 456.2823 | 0.0006 | 1.4 |
23 | 39.91 | [M+2H]2+ | 572.3353 | 573.3356 | 0.0003 | 0.5 |
19 | 41.76 | [M+2H]2+ | 584.3773 | 584.7387 | 0.0014 | 2.4 |
18 | 42.07 | [M+2H]2+ | 526.2783 | 526.2786 | 0.0003 | 0.6 |
20 | 42.76 | [M+2H]2+ | 597.3249 | 597.3254 | 0.0005 | 0.8 |
15 | 43.75 | [M+2H]2+ | 511.3001 | 511.3008 | 0.0007 | 1.5 |
17 | 45.16 | [M+2H]2+ | 622.7844 | 622.7853 | 0.0009 | 1.4 |
26 | 51.41 | [M+H]+ | 857.3896 | 857.3901 | 0.0005 | 0.6 |
27 | 52.55 | [M+2H]2+ | 595.8482 | 495.8488 | 0.0006 | 1.0 |
24 | 53.83 | [M+H]+ | 1339.6264 | 1339.6265 | 0.0001 | 0.1 |
7 | 55.02 | [M+2H]2+ | 943.5281 | 943.5295 | 0.0014 | 1.5 |
4 | 62.22 | [M+2H]2+ | 603.7681 | 603.7694 | 0.0013 | 2.2 |
31 | 64.71 | [M+H]+ | 1319.5579 | 1319.5580 | 0.0001 | 0.1 |
30 | 67.99 | [M+2H]2+ | 641.3273 | 641.3280 | 0.0007 | 1.0 |
6 | 73.13 | [M+H]+ | 920.4944 | 920.4958 | 0.0014 | 1.6 |
3 | 85.26 | [M+H]+ | 966.5659 | 966.5663 | 0.0004 | 0.4 |
2 | * | [M+H]+ | 1071.5027 | 1071.5027 | 0.0000 | 0.0 |
5 | * | [M+H]+ | 906.4787 | 906.4808 | 0.0021 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosc-Bierne, G.; Ewald, S.; Kreuzer, O.J.; Weller, M.G. Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection. Separations 2024, 11, 156. https://doi.org/10.3390/separations11050156
Bosc-Bierne G, Ewald S, Kreuzer OJ, Weller MG. Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection. Separations. 2024; 11(5):156. https://doi.org/10.3390/separations11050156
Chicago/Turabian StyleBosc-Bierne, Gaby, Shireen Ewald, Oliver J. Kreuzer, and Michael G. Weller. 2024. "Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection" Separations 11, no. 5: 156. https://doi.org/10.3390/separations11050156
APA StyleBosc-Bierne, G., Ewald, S., Kreuzer, O. J., & Weller, M. G. (2024). Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection. Separations, 11(5), 156. https://doi.org/10.3390/separations11050156