Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions
2.2. Sample Preparation
2.2.1. “Dilute-and-Shoot” Procedure
2.2.2. Solid-Phase Extraction
2.3. Instrumentation
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Anti-Doping Agency, Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 19 April 2024).
- World Anti-Doping Agency, WADA Testing Figures Report. Available online: https://www.wada-ama.org/sites/default/files/2023-01/2021_anti-doping_testing_figures_en.pdf (accessed on 12 March 2024).
- Gil, J.; Cabrales, A.; Reyes, O.; Morera, V.; Betancourt, L.; Sánchez, A.; García, G.; Moya, G.; Padrón, G.; Besada, V.; et al. Development and validation of a bioanalytical LC-MS method for the quantification of GHRP-6 in human plasma. J. Pharm. Biomed. Anal. 2012, 60, 19–25. [Google Scholar] [CrossRef]
- Coppieters, G.; Deventer, K.; van Eenoo, P.; Judák, P. Combining direct urinary injection with automated filtration and nanoflow LC-MS for the confirmatory analysis of doping-relevant small peptide hormones. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1179, 122842. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Han, B.; Sung, C.; Park, J.-H.; Lee, K.; Kim, H.; Kim, K.; Son, J.; Kwon, O.-S.; Lee, J. LC-MS/MS method for simultaneous analysis of growth hormone-releasing peptides and secretagogues in human urine. Mass Spectrom. Lett. 2016, 7, 55–63. [Google Scholar] [CrossRef]
- Timms, M.; Hall, N.; Levina, V.; Vine, J.; Steel, R. A high-throughput LC-MS/MS screen for GHRP in equine and human urine, featuring peptide derivatization for improved chromatography. Drug Test. Anal. 2014, 6, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Thomas, A.; Schänzer, W. Doping control analysis of selected peptide hormones using LC-MS(/MS). Forensic Sci. Int. 2011, 213, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.D.; Hughes, C.M.; Eichner, D. Detection of GHRP-2 and GHRP-6 in urine samples from athletes. Drug Test. Anal. 2015, 7, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guerrero, N.A.; González-López, N.M.; Zapata-Velásquez, J.D.; Martínez-Ramírez, J.A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synthetic Peptides in Doping Control: A Powerful Tool for an Analytical Challenge. ACS Omega 2022, 7, 38193–38206. [Google Scholar] [CrossRef] [PubMed]
- Semenistaya, E.; Zvereva, I.; Thomas, A.; Thevis, M.; Krotov, G.; Rodchenkov, G. Determination of growth hormone releasing peptides metabolites in human urine after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin. Drug Test. Anal. 2015, 7, 919–925. [Google Scholar] [CrossRef]
- Semenistaya, E.; Zvereva, I.; Krotov, G.; Rodchenkov, G. Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine. Drug Test. Anal. 2016, 8, 940–949. [Google Scholar] [CrossRef]
- Jing, J.; Tian, T.; Wang, Y.; Xu, X.; Shan, Y. Multi-analyte screening of small peptides by alkaline pre-activated solid phase extraction coupled with liquid chromatography-high resolution mass spectrometry in doping controls. J. Chromatogr. A 2022, 1676, 463272. [Google Scholar] [CrossRef]
- WADA Technical Document-TD2022MRPL Document Number: TD2022MRPL Version Number: 1.0 Minimum Required Performance Levels and Applicable Minimum Reporting Levels for Non-Threshold Substances Analyzed by Chromatographic-mass Spectrometric Analytical Methods. Available online: https://www.wada-ama.org/sites/default/files/resources/files/td2022mrpl_v1.0_final_eng.pdf (accessed on 1 May 2024).
- Esposito, C.L.; Ac, A.G.; Laszlo, E.; Duy, S.V.; Michaud, C.; Sauvé, S.; Ong, H.; Marleau, S.; Banquy, X.; Brambilla, D. A Quantitative UHPLC-MS/MS Method for the Growth Hormone-Releasing Peptide-6 Determination in Complex Biological Matrices and Transdermal Formulations. Talanta 2021, 233, 122555. [Google Scholar] [CrossRef]
- Reverter-Branchat, G.; Segura, J.; Pozo, O.J. On the Road of Dried Blood Spot Sampling for Antidoping Tests: Detection of GHRP-2 Abuse. Drug Test. Anal. 2021, 13, 510–522. [Google Scholar] [CrossRef]
- Lange, T.; Thomas, A.; Walpurgis, K.; Thevis, M. Fully Automated Dried Blood Spot Sample Preparation Enables the Detection of Lower Molecular Mass Peptide and Non-Peptide Doping Agents by Means of LC-HRMS. Anal. Bioanal. Chem. 2020, 412, 3765–3777. [Google Scholar] [CrossRef]
- Judák, P.; Esposito, S.; Coppieters, G.; van Eenoo, P.; Deventer, K. Doping control analysis of small peptides: A decade of progress. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1173, 122551. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Kong, F.; Wang, Y.; Shi, Q.; Zhang, L. Selective molecular characterization of olefins in hydrocarbon mixtures by Ag+ complexation ESI high-resolution mass spectrometry. Fuel 2022, 319, 123760. [Google Scholar] [CrossRef]
- Medvedovici, A.; Lazou, K.; D’Oosterlinck, A.; Zhao, Y.; Sandra, P. Analysis of jojoba oil by LC-coordination ion spray-MS (LC-CIS-MS). J. Sep. Sci. 2002, 25, 173–178. [Google Scholar] [CrossRef]
- Gómez-Guerrero, N.A.; González-López, N.M.; Zapata-Velásquez, J.D.; Martínez-Ramírez, J.A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synthesis of polysulfanes with 20 or more sulfur atoms with characterization by UPLC-(Ag+)-coordination ion spray-MS. J. Sulfur. Chem. 2013, 34, 55–66. [Google Scholar]
- Cha, E.; Kim, S.; Kim, H.J.; Lee, K.M.; Kim, K.H.; Kwon, O.S.; Lee, J. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag+ CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control. Drug Test. Anal. 2015, 7, 1040–1049. [Google Scholar] [CrossRef]
- Cha, E.; Lee, K.M.; Park, K.D.; Park, K.S.; Lee, K.W.; Kim, S.M.; Lee, J. Hydroxycholesterol levels in the serum and cerebrospinal fluid of patients with neuromyelitis optica revealed by LC-Ag+CIS/MS/MS and LC-ESI/MS/MS with picolinic derivatization: Increased levels and association with disability during acute attack. PLoS ONE 2016, 11, 0167819. [Google Scholar] [CrossRef]
- Virus, E.D.; Sobolevsky, T.G.; Rodchenkov, G.M. “Wrong-Way-Round Ionization” and Screening for Doping Substances in Human Urine by High-Performance Liquid Chromatography/Orbitrap Mass Spectrometry. J. Mass. Spectrom. 2012, 47, 381–391. [Google Scholar] [CrossRef]
- Venter, P.; van Onselen, R. Evaluating the “Wrong-Way-Round” Electrospray Ionization of Antiretroviral Drugs for Improved Detection Sensitivity. Anal. Bioanal. Chem. 2023, 415, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Seal, J.R.; Havrilla, C.M.; Porter, N.A.; Hachey, D.L. Analysis of unsaturated compounds by Ag+ coordination ionspray mass spectrometry: Studies of the formation of the Ag+/lipid complex. J. Am. Soc. Mass. Spectrom. 2003, 14, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, T.; Pucciarelli, F.; Passamonti, P.; Ferraro, S. Influence of metal impurities sorption onto a silica based C18 stationary phase on the HPLC of metal chelating analytes. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 429–440. [Google Scholar] [CrossRef]
- de Pra, M.; Greco, G.; Krajewski, M.P.; Martin, M.M.; George, E.; Bartsch, N.; Steiner, F. Effects of titanium contamination caused by iron-free high-performance liquid chromatography systems on peak shape and retention of drugs with chelating properties. J. Chromatogr. A 2020, 1611, 460619. [Google Scholar] [CrossRef]
- FDA Guidance Document M10 Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.fda.gov/media/162903/download (accessed on 19 April 2024).
- European Medicine Academy Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 19 April 2024).
Compound | Relative Peak Area of the Analytes with Different Dopants, % | ||
---|---|---|---|
CIS-MS (Ag+) | CIS-MS (Li+) | CIS-MS (K+) | |
GHRP-6 | 100 | 62 | 75 |
GHRP-2 | 100 | 68 | 88 |
Compound | CIS-MS (Ag+) | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) | |||
---|---|---|---|---|---|---|
LOD, ng/mL | LLOQ, ng/mL | LOD, ng/mL | LLOQ, ng/mL | LOD, ng/mL | LLOQ, ng/mL | |
GHRP-6 | 0.2 | 0.5 | 1 | 2 | 10 | 20 |
GHRP-2 | 0.2 | 0.5 | 1 | 2 | 10 | 20 |
Compound | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) | CIS-MS (Ag+) | ||||||
---|---|---|---|---|---|---|---|---|---|
QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | QC Low, ng/mL | QC Med, ng/mL | QC High, ng/mL | |
GHRP-6 | 5.6 ± 0.6 | 27 ± 2 | 52 ± 5 | 28 ± 3 | 51 ± 5 | 106 ± 8 | 2.2 ± 0.3 | 21 ± 2 | 52 ± 5 |
GHRP-2 | 5.3 ± 0.6 | 24 ± 3 | 54 ± 5 | 29 ± 3 | 53 ± 5 | 104 ± 8 | 2.3 ± 0.3 | 22 ± 2 | 53 ± 5 |
Compound | CIS-MS (Ag+) | ESI-MS (SPE) | ESI-MS (“Dilute-and-Shoot”) |
---|---|---|---|
ME, % | ME, % | ME, % | |
GHRP-6 | 116 ± 13 | 112 ± 12 | 119 ± 22 |
GHRP-2 | 114 ± 11 | 108 ± 9 | 118 ± 22 |
Compound | tR, Min | ESI-MS | CIS-MS | ||||||
---|---|---|---|---|---|---|---|---|---|
Tube Lens, V | Q1, m/z | Q3, m/z | CE, eV | Tube Lens, V | Q1, m/z | Q3, m/z | CE, eV | ||
DSIP | 2.82 | 81 | [M+2H]2+ 389.0 | 159.0 | 31 | 72 | [M+Ag]+ 955.0 | 159.0 | 43 |
171.0 | 29 | 171.0 | 38 | ||||||
255.0 | 22 | 255.0 | 34 | ||||||
GHRP-2 | 3.24 | 70 | [M+2H]2+ 409.7 | 170.1 | 34 | 88 | [M+Ag]+ 924.0 | 170.1 | 57 |
269.1 | 15 | 269.1 | 52 | ||||||
550.2 | 10 | 550.2 | 61 | ||||||
GHRP-6 | 3.35 | 76 | [M+2H]2+ 437.2 | 248.0 | 32 | 81 | [M+Ag]+ 993.0 | 248.0 | 58 |
324.0 | 28 | 324.0 | 50 | ||||||
129.1 | 23 | 129.1 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temerdashev, A.; Gashimova, E.; Azaryan, A.; Feng, Y.-Q.; Atapattu, S.N. Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations 2024, 11, 155. https://doi.org/10.3390/separations11050155
Temerdashev A, Gashimova E, Azaryan A, Feng Y-Q, Atapattu SN. Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations. 2024; 11(5):155. https://doi.org/10.3390/separations11050155
Chicago/Turabian StyleTemerdashev, Azamat, Elina Gashimova, Alice Azaryan, Yu-Qi Feng, and Sanka N. Atapattu. 2024. "Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study" Separations 11, no. 5: 155. https://doi.org/10.3390/separations11050155
APA StyleTemerdashev, A., Gashimova, E., Azaryan, A., Feng, Y. -Q., & Atapattu, S. N. (2024). Coordination Ion Spray for Analysis of the Growth Hormones Releasing Peptides in Urine—An Application Study. Separations, 11(5), 155. https://doi.org/10.3390/separations11050155