Effects of Abelmoschus esculentus Extracts and Fractions on Embryos and Adult Individuals of Biomphalaria glabrata (Say, 1818) and on Schistosoma mansoni Cercariae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Plant Material
2.2. Preparation and Fractionation of Extracts
2.3. Analysis through Liquid Chromatography Coupled to Mass Spectrometry (LC-QTOF/MS) of Fractions of the Species Abelmoschus esculentus
2.4. Molluscicidal Activity Assays of Biomphalaria glabrata
2.5. Molluscicidal Activity Assays of Physa acuta
2.6. Ovicidal Activity Assays
2.7. Cercaricidal Activity Assays
2.8. Acetylcholinesterase Assay in a 96-Well Microplate
2.9. Statistical Analysis
3. Results
3.1. Molluscicidal Activity Assays of Biomphalaria glabrata
3.2. Ovicidal Activity Assays
3.3. Cercaricidal Activity Assays
3.4. Molluscicidal Activity Assays of Physa acuta
3.5. Chemical Identification of the FrMeOH EDM Fraction through Liquid Chromatography Coupled to Mass Spectrometry (LC-QTOF/MS)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Artal, F.J.C. Cerebral and Spinal Schistosomiasis. Curr. Neurol. Neurosci. Rep. 2012, 12, 666–674. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Epidemiology and Control of Schistosomiasis; Technical Report Series 728; WHO—World Health Organization: Geneva, Switzerland, 2016.
- Secor, W.E. Water-based interventions for schistosomiasis control. Pathog. Glob. Health 2014, 108, 246–254. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Schistosomiasis. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 20 April 2020).
- Abou-El-Naga, I.F. Demographic, socioeconomic and environmental changes affecting circulation of neglected tropical diseases in Egypt. Asian Pac. J. Trop. Med. 2015, 8, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Madinga, J.; Linsuke, S.; Mpabanzi, L.; Meurs, L.; Kanobana, K.; Speybroeck, N.; Lutumba, P.; Polman, K. Schistosomiasis in the Democratic Republic of Congo: A literature review. Parasit Vectors 2015, 8, 601. [Google Scholar] [CrossRef] [PubMed]
- Vitorino, R.R.; Souza, F.P.C.; Costa, A.P.; Júnior, F.C.F.; Santana, L.A.; Gomes, A.P. Esquistossomose mansônica: Diagnóstico, tratamento, epidemiologia, profilaxia e controle. Rev. Bras. Clin. Med. 2012, 10, 39–45. [Google Scholar]
- Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. In Guia de Vigilância em Saúde 3, 1st ed.; Ministério da Saúde: Brasília, Brazil, 2017. [Google Scholar]
- Neves, D.P.; Melo, A.L.; Linardi, P.M.; Almeida, R.W.; Bezerra, F.S.M. Molusco transmissor do Schistosoma mansoni. In Parasitologia Humana, 12th ed.; Atheneu: São Paulo, Brazil, 2011; Volume 23, pp. 231–240. [Google Scholar]
- Carvalho, O.S.; Coelho, P.M.; Lenzi, H.L. Epidemiologia e controle da esquitossomose mansoni. In Schistosoma mansoni & Esquistossomose: Uma Visão Multidisciplinar; Fiocruz: Rio de Janeiro, Brazil, 2008; pp. 965–1008. [Google Scholar]
- Giovanelli, A.; Soares, M.S.; D’Andréa, P.S.; Gonçalves, M.M.L.; Rey, L. Abundância e infecção do molusco Biomphalaria glabrata pelo Schistosoma mansoni no Estado do Rio de Janeiro, Brasil. Rev. Saude Publica 2001, 35, 523–530. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Organization’s Guidelines on Screening for Plant Molluskicides; Technical Report Series 728; WHO—World Health Organization: Geneva, Switzerland, 1983.
- Calumpang, S.M.F.; Medina, M.J.B.; Tejada, A.W.; Medina, J.R. Environmental impact of two molluscicides: Niclosamide and metaldehyde in a rice paddy ecosystem. Bull. Environ. Contam. Toxicol. 1995, 55, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Diab, Y.; Ioannou, E.; Emam, A.; Vagias, C.; Roussis, V. Desmettianosides A and B, bisdesmosidic furostanol saponins with molluscicidal activity from Yucca desmettiana. Steroids 2012, 77, 686–690. [Google Scholar] [CrossRef]
- Salem, H.K.; Omram, N.E.E.; Eissam, S.H.; Kandeil, M.A. Induction of teratogenesis of freshwater snail (Biomphalaria alexandrina) using the molluskicide niclosamide. Sci.-Afric. J. Scient. Issues Res. 2014, 2, 255–268. [Google Scholar]
- Mccllough, F.S.; Gayral, P.; Duncan, J.; Christie, J.D. Molluskicides in schistosomiasis control. B World Health Organ. 1980, 58, 681–689. [Google Scholar]
- Marston, A.; Hostettmann, K. Review article number 6: Plants moluscicides. Phytochemistry 1985, 24, 639–652. [Google Scholar] [CrossRef]
- Coelho, P.M.Z.; Caldeira, R.L. Critical analysis of molluskicide application in schistosomiasis control programs in Brazil. BioMed Cent. 2016, 5, 6. [Google Scholar] [CrossRef]
- Simões, C.M.O.; Schenkel, E.L.; Gosman, G. Farmacognosia: Da Planta ao Medicamento; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 1999; p. 821. [Google Scholar]
- Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. BioMed Res. Int. 2014, 2014, 341291. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, J.; Bhatt, P. Flavonoids derived from Abelmoschus esculentus attenuates UV-B induced cell damage in human dermal fibroblasts through Nrf2-AREpathway. Pharmacogn. Mag. 2016, 12 (Suppl. 2), S129–S138. [Google Scholar] [CrossRef]
- Khosrozadeh, M.; Heydari, N.; Abootalebi, M. The effect of Abelmoschus esculentus on blood levels of glucose in Diabetes Mellitus. Iran. J. Med. Sci. 2016, 41, S63. [Google Scholar] [PubMed]
- Yang, Y.; Jin, Z.; Mao, P.; Jin, J.; Huang, J.; Yang, M. Study on anti-fatigue effect of okra extracts. Chin. J. Mod. Appl. Pharm. 2012, 29, 4. [Google Scholar] [CrossRef]
- Shah, B.N.; Seth, A.K.; Maheshwari, K.M.; Desai, R.V. Screening of Abelmoschus esculentus fruits for its analgesic activity. Pharmacol. Online 2010, 2, 17–21. [Google Scholar]
- WHO—World Heatlh Organization. Molluskicide Screening and Evolution. Bull. World. Health.Org. 1965, 33, 567–581. [Google Scholar]
- Santos, J.A.A.; Cavalcante, V.P.; Rangel, L.S.; Leite, J.C.V.A.; Faria, R.X. A new technique using low volumes: A new technique to assess the molluscicidal activity using low volumes. Evid. -Based Complement. Altern. Med. 2017, 2017, 10. [Google Scholar] [CrossRef]
- Litchfield, J.T.; Wilcoxon, F.A.A. Simplified method of evaluating dose-effect experiment. J. Pharm. Exp. Ther. 1949, 96, 99–113. [Google Scholar]
- Devlin, T.M. Manual de Bioquímica com Correlações Químicas; Edgard Blucher: São Paulo, Brazil, 2000. [Google Scholar]
- Batista, W.R.; Lopesa, S.R.P.; Batista, D.; Nevesa, M.H.C.B.; Coutinhoa, R.; Lopesb, C.C.; Lopesb, R.S.C. Evaluating Antimicrobial Activity of Bioactive Glycerophospholipids Presents in Brazilian Marine Sponges Extracts. In The Battle against Microbial Pathogens: Basic Science, Technological Advances, and Educational Programs; Microbiology Book Series 5; Formatex Research Center S.L.: Badajoz, Spain, 2015; pp. 144–150. [Google Scholar]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef]
- Dos Santos, E.A.; de Carvalho, C.M.; Costa, A.L.S.; Conceição, A.S.; Moura, F.B.P.; Santana, A.E.G. Bioactivity Evaluation of plant extracts used in indigenous medicine against the snail, Biomphalaria glabrata, and the larvae of Aedes aegypti. Evid. -Based Complement. Altern. Med. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Silva, T.M.; Da Silva, T.G.; Martins, R.M.; Maia, G.L.; Cabral, A.G.; Camara, C.A.; Agra, M.F.; Barbosa-Filho, J.M. Molluscicidal activities of six species of Bignoniaceae from northeastern Brazil, as measured against Biomphalaria glabrata under laboratory conditions. Ann. Trop Med. Parasitol. 2007, 101, 359–365. [Google Scholar] [CrossRef]
- Rapado, L.N.; Pinheiro, A.S.; Lopes, P.O.; Fokoue, H.H.; Scotti, M.T.; Marques, J.V.; Ohlweiler, F.P.; Borrely, S.I.; Pereira, C.A.; Kato, M.J.; et al. Schistosomiasis control using piplartine against Biomphalaria glabrata at different developmental stages. PLoS Negl. Trop Dis. 2013, 7, 2251. [Google Scholar] [CrossRef]
- Rapado, L.N.; Nakano, E.; Ohlweiler, F.P.; Kato, M.J.; Yamaguchi, L.F.; Pereira, C.A.B.; Kawano, T. Molluscicidal and ovicidal activities of plant extracts of the Piperaceae on Biomphalaria glabrata (Say, 1818). J. Helminthol. 2011, 85, 66–72. [Google Scholar] [CrossRef]
- Miyasato, P.A.; Kawano, T.; Freitas, J.C.; Berlinck, R.G.; Nakano, E.; Tallarico, L.F. Molluscicidal activity of some marine substances against the snail Biomphalaria glabrata (Molluska, Planorbidae). Parasitol. Res. 2012, 110, 1873–1879. [Google Scholar] [CrossRef]
- Oliveira-Filho, E.C.; Geraldino, B.R.; Coelho, D.R.; De-Carvalho, R.R.; Paumgartten, F.J. Comparative toxicity of Euphorbia milii latex and synthetic molluskicides to Biomphalaria glabrata embryos. Chemosphere 2010, 81, 218–227. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.K. Molluscicidal activity of Abrus precatorius Linn. and Argemone mexicana Linn. Chemosfere 1999, 38, 3319–3328. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic trasaminases. Am. J. Clin. Path. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Kind, P.R.N.; King, E.J. Estimation of plasma phosphatase by determination of hydrolyzed phenol with amino-antipyrine. J. Clin. Pathol. 1954, 7, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- De-Carvalho, R.R.; Maldonado Júnior, A.; Oliveira Filho, E.C.; Ribeiro, A.C.; Paumgartten, F.J.; Rey, L. Effects of Euphorbia milii latex on Schistosoma mansoni eggs, miracidia and cercariae. Mem. Inst. Oswaldo Cruz. 1998, 93 (Suppl. 1), 235–237. [Google Scholar] [CrossRef]
- Martins, M.C.B.; Silva, M.C.; Silva, H.A.M.F.; Silva, L.R.S.; Albuquerque, M.C.P.A.; Aires, A.L.; Falcão, E.P.S.; Pereira, E.C.; Melo, A.M.M.A.; Silva, N.H. Barbatic acid offers a new possibility for control of Biomphalaria glabrata and schistosomiasis. Molecules 2017, 22, 568. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Fonseca, S.A.; César, F.A.; Albuquerque, M.C.P.A.; Santana, J.V.; Santana, A. A penta-substituted pyridine alkaloid from the rhizome of Jatropha elliptica (Pohl) Muell. Arg. is active against Schistosoma mansoni and Biomphalaria glabrata. Parasitol. Res 2014, 113, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Tekwu, E.M.; Bosompem, K.M.; Anyan, W.K.; Appiah-Opong, R.; Owusu, K.B.A.; Tettey, M.D.; Kissi, F.A.; Appiah, A.A.; Beng, V.P.; Nyarko, A.K. In Vitro Assessment of Anthelmintic Activities of Rauwolfia vomitoria (Apocynaceae) Stem Bark and Roots against Parasitic Stages of Schistosoma mansoni and Cytotoxic Study. J. Parasitol. Res. 2017, 2017, 2583969. [Google Scholar] [CrossRef]
- OECD—Organization for Economic Co-operation and Development. Test No. 203: Fish, Acute Toxicity Test; OECD iLibrary: Berlin, Germany, 2019. [Google Scholar]
- NBR 12713; Ecotoxicologia Aquática—Toxicidade Aguda—Método de Ensaio com Daphnia spp. (Crustacea, Cladocera). ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016; 23 p.
- OECD—Organization for Economic Co-operation and Development. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Guidel. Test. Chem. 2004, 201, 1–15. [Google Scholar]
- ISO 11348-1; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminecescentbacteria Test). ISO—International Organization for Standardization: Geneve, Switzerland, 1997.
- Postila, P.A.; Róg, T. A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol. Neurobiol. 2020, 57, 910–925. [Google Scholar] [CrossRef] [PubMed]
- Stasiuk, M.; Janiszeweska, A.; Kozubek, A. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel). Nutrients 2014, 6, 1823–1831. [Google Scholar] [CrossRef]
- Stasiuk, M.; Bartosiewicz, D.; Kozubek, A. Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chem. 2008, 108, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Akay, M.B.; Şener, K.; Sari, S.; Bodur, E. Inhibitory Action of Omega-3 and Omega-6 Fatty Acids Alpha-Linolenic, Arachidonic and Linoleic acid on Human Erythrocyte Acetylcholinesterase. Protein. J. 2023, 42, 96–103. [Google Scholar] [CrossRef]
- Loesche, A.; Wiemann, J.; Al Halabi, Z.; Karasch, J.; Sippl, W.; Csuk, R. Unexpected AChE inhibitory activity of (2E)α,β-unsaturated fatty acids. Bioorg. Med. Chem. Lett. 2018, 28, 3315–3319. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Lopez Gonzalez-Coviella, I.; Logue, M.; Growdon, J.H.; Wurtman, R.J. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer’s disease but not of Down’s syndrome patients. Brain Res. 1990, 536, 240–244. [Google Scholar] [CrossRef]
- Fifer, E.K.; Lemke, T.L.; Williams, D.A. Em Foye’s Principles of Medicinal Chemistry, 7th ed.; Lemke, T.L., Williams, D.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; cap. 12. [Google Scholar]
- Vehovszky, Á.; Farkas, A.; Ács, A.; Stoliar, O.; Székács, A.; Mörtl, M.; Győri, J. Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluskan (Lymnaea stagnalis) nervous system. Aquat. Toxicol. 2015, 167, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Schultz, T.; Althaus, H.H. Monogalactosyl diglyceride, a marker for myelination, activates oligodendroglial protein kinase C. J. Neurochem. 1994, 62, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Plows, L.D.; Cook, R.T.; Davies, A.J.; Walker, A.J. Activation of extracellular-signal regulated kinase is required for phagocytosis by Lymnaea stagnalis hemocytes. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1692, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.; Lacchini, A.H.; Davies, A.J.; Walker, A.J. Regulation of nitric oxide production in snail (Lymnaea stagnalis) defense cells: A role for PKC and ERK signaling pathways. Biol. Cell 2006, 98, 265–278. [Google Scholar] [CrossRef]
- Humphries, J.E.; Elizondo, L.; Yoshino, T.P. Protein kinase C regulation of cell spreading in the molluskan Biomphalaria glabrata embryonic (Bge) cell line. Biochim. Biophys. Acta Mol. Cell Res. 2001, 1540, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Lacchini, A.H.; Davies, A.J.; Mackintosh, D.; Walker, A.J. β-1,3-glucan modulates PKC signaling in Lymnaea stagnalis defense cells: A role for PKC in H2O2 production and downstream ERK activation. J. Exp. Biol. 2006, 209, 4829–4840. [Google Scholar] [CrossRef]
- Lardans, V.; Serra, E.; Capron, A.; Dissous, C. Characterization of an intracellular receptor for activated protein kinase C (RACK) from the mollusk Biomphalaria glabrata, the intermediate host for Schistosoma mansoni. Exp. Parasitol. 1998, 88, 194–199. [Google Scholar] [CrossRef]
Extract/Fraction | Concentration (mg/L) | Mortality (%) | LC50 (mg/L) | LC90 (mg/L) |
---|---|---|---|---|
H2O | - | 0.0 | - | - |
1% DMSO | - | 0.0 | - | - |
Niclosamide® | 2.0 | 100.0 | - | - |
Crude acetone extract | 25 | 11.0 | 62.8 | 99.68 |
75 | 33.33 | |||
100 | 100.0 | |||
Crude hexane extract | 25 | 0.0 | 85.43 | 130.47 |
50 | 0.0 | |||
75 | 22.33 | |||
100 | 77.67 | |||
150 | 100.0 | |||
Crude dichloromethane extract | 50 | 0.0 | 100.55 | 149.87 |
75 | 11.0 | |||
125 | 55.67 | |||
150 | 100.0 | |||
Crude ethyl acetate extract | 25 | 0.0 | 91.19 | 149.61 |
125 | 55.66 | |||
150 | 100.0 | |||
Crude ethanol extract | 100 | 0.0 | 209.2 | 279.84 |
150 | 0.0 | |||
200 | 0.0 | |||
225 | 33.33 | |||
250 | 66.67 | |||
275 | 100.0 | |||
FrDM EAceto | 50 | 0.0 | 70.73 | 96.76 |
75 | 11.0 | |||
100 | 100.0 | |||
FrAceto EAceto | 35 | 0.0 | 43.39 | 58.34 |
40 | 11.00 | |||
50 | 89.00 | |||
55 | 100.0 | |||
FrMeOH EAceto | 50 | 0.0 | 57.70 | 83.79 |
65 | 55.66 | |||
70 | 89.0 | |||
100 | 100.0 | |||
FrCCl3 EDM | 5 | 0.0 | 21.14 | 36.34 |
10 | 11.0 | |||
20 | 66.66 | |||
25 | 77.66 | |||
50 | 100.0 | |||
FrETOH EDM | 10 | 0.0 | 29.38 | 43.26 |
25 | 11.0 | |||
35 | 44.33 | |||
40 | 89.0 | |||
45 | 100.0 | |||
FrHex EDM | 15 | 0.0 | 25.80 | 39.80 |
25 | 33.33 | |||
30 | 77.66 | |||
35 | 89.0 | |||
50 | 100.0 | |||
FrMeOH EDM | 5 | 0.0 | 23.43 | 37.15 |
20 | 11.0 | |||
25 | 89.0 | |||
50 | 100.0 | |||
FrAcO EHex | 25 | 0.0 | 34.28 | 48.28 |
30 | 11.0 | |||
45 | 77.66 | |||
50 | 100.0 | |||
FrCCl3 EHex | 25 | 0.0 | 34.33 | 49.57 |
30 | 22.33 | |||
35 | 55.66 | |||
45 | 66.66 | |||
50 | 100.0 | |||
FrHex EHex | 20 | 0.0 | 30.42 | 46.42 |
25 | 33.33 | |||
50 | 100.0 | |||
FrMeOH EHex | 15 | 0.0 | 18.29 | 24.25 |
20 | 11.0 | |||
25 | 100.0 |
Extracts/Fractions | Mortality LC50 (%) | Mortality LC90 (%) |
---|---|---|
H2O | 0 | 0 |
DMSO 1% | 0 | 0 |
Niclosamide | 100 | 100 |
Crude hexane extract | 30.54 | 92.56 |
Crude dichloromethane extract | 0.79 | 0.79 |
Crude ethyl acetate extract | 11.24 | 39.52 |
Crude ethanol extract | 49.15 | 100 |
FrDM EAceto | 0.77 | 51.94 |
FrAceto EAceto | 10.56 | 86.77 |
FrMeOH EAceto | 18.01 | 77.61 |
FrCCl3 EDM | 31.39 | 100 |
FrETOH EDM | 3.08 | 67.28 |
FrHex EDM | 27.46 | 100 |
FrMeOH EDM | 54.54 | 100 |
FrAcO EHex | 0 | 37.83 |
FrCCl3 EHex | 1.46 | 54.13 |
FrHex EHex | 1.32 | 78.61 |
FrMeOH EHex | 1.59 | 17.56 |
Extracts/Fractions | Mortality LC50 (%) | Mortality LC90 (%) |
---|---|---|
H2O | 6.7 | 6.7 |
DMSO 1% | 6.12 | 6.12 |
Niclosamide | 100 | 100 |
Crude hexane extract | 10.85 | 18.35 |
Crude dichloromethane extract | 99.21 | 100 |
Crude ethyl acetate extract | 35.79 | 38.96 |
Crude ethanol extract | 66.14 | 64.19 |
FrDM EAceto | 100.0 | 100.0 |
FrAceto EAceto | 45.59 | 53.92 |
FrMeOH EAceto | 26.0 | 34.52 |
FrCCl3 EDM | 22.29 | 65.04 |
FrETOH EDM | 28.74 | 54.52 |
FrHex EDM | 58.22 | 64.15 |
FrMeOH EDM | 100 | 100 |
FrAcO EHex | 66.37 | 100 |
FrCCl3 EHex | 100 | 100 |
FrHex EHex | 37.48 | 54.15 |
FrMeOH EHex | 14.96 | 31.11 |
Extracts/Fractions | Mortality LC50 (%) | Mortality LC90 (%) |
---|---|---|
H2O | 0.00 | 0.00 |
DMSO 1% | 0.00 | 0.00 |
Niclosamide | 62.96 ** | 100.00 *** |
Crude hexane extract | 55.56 * | - |
Crude dichloromethane extract | 5.56 | - |
Crude acetone extract | 0.00 | - |
Crude ethyl acetate extract | 38.89 | - |
Crude ethanol extract | 27.78 | - |
FrDM EAceto | 11.11 | 44.44 ** |
FrAceto EAceto | 77.78 *** | 100.00 *** |
FrMeOH EAceto | 100.00 *** | 100.00 *** |
FrCCl3 EDM | 100.00 *** | 100.00 *** |
FrETOH EDM | 100.00 *** | 100.00 *** |
FrHex EDM | 74.07 *** | 77.78 *** |
FrMeOH EDM | 70.37 ** | 81.48 *** |
FrAcO EHex | 66.67 ** | 77.78 *** |
FrCCl3 EHex | 70.37 ** | 77.78 *** |
FrHex EHex | 66.67 ** | 77.78 *** |
FrMeOH EHex | 55.55 * | 100.00 *** |
Fraction | Substance | Group | M − H Exp | M + H Exp | M − H lit | M + H lit | m/z |
---|---|---|---|---|---|---|---|
FrMeOH EDM | PC 36:2 (13:1/23:1) | Glycerophosphocholine | − | 786.6026 | − | 786.6007 | 634, 590, 546, 507, 419, 375, 227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, J.C.V.A.; Rangel, L.d.S.; Gomes, K.N.F.; de Albuquerque, R.D.D.G.; dos Santos, J.A.A.; Faria, R.X. Effects of Abelmoschus esculentus Extracts and Fractions on Embryos and Adult Individuals of Biomphalaria glabrata (Say, 1818) and on Schistosoma mansoni Cercariae. Separations 2024, 11, 99. https://doi.org/10.3390/separations11040099
Leite JCVA, Rangel LdS, Gomes KNF, de Albuquerque RDDG, dos Santos JAA, Faria RX. Effects of Abelmoschus esculentus Extracts and Fractions on Embryos and Adult Individuals of Biomphalaria glabrata (Say, 1818) and on Schistosoma mansoni Cercariae. Separations. 2024; 11(4):99. https://doi.org/10.3390/separations11040099
Chicago/Turabian StyleLeite, João Claudio Vitoria Atico, Leonardo da Silva Rangel, Keyla Nunes Farias Gomes, Ricardo Diego Duarte Galhardo de Albuquerque, José Augusto Albuquerque dos Santos, and Robson Xavier Faria. 2024. "Effects of Abelmoschus esculentus Extracts and Fractions on Embryos and Adult Individuals of Biomphalaria glabrata (Say, 1818) and on Schistosoma mansoni Cercariae" Separations 11, no. 4: 99. https://doi.org/10.3390/separations11040099
APA StyleLeite, J. C. V. A., Rangel, L. d. S., Gomes, K. N. F., de Albuquerque, R. D. D. G., dos Santos, J. A. A., & Faria, R. X. (2024). Effects of Abelmoschus esculentus Extracts and Fractions on Embryos and Adult Individuals of Biomphalaria glabrata (Say, 1818) and on Schistosoma mansoni Cercariae. Separations, 11(4), 99. https://doi.org/10.3390/separations11040099