Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Solutions
2.2. Instrumentation and Chromatographic Conditions
3. Results and Discussion
3.1. Formation Study of the Nano-Emulsion
3.2. HPLC-DAD Method Optimization
3.3. HPLC-DAD Method Validation
3.3.1. Specificity
3.3.2. Linearity, LLODs and LLOQs
3.3.3. Accuracy and Precision
3.3.4. Robustness
3.4. Extraction of Chlorogenic Acid and Caffeine
3.5. Sample Purification Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quan, T. Molecular insights of human skin epidermal and dermal aging. J. Dermatol. Sci. 2023, 112, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Kevin, M.G.; Taylor; Aulton, M.E. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 4th ed.; Churchill Livingstone: Edinburgh, Scotland, 2013. [Google Scholar]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Bora, J.; Tongbram, T.; Mahnot, N.; Mahanta, C.L.; Badwaik, L.S. Tocopherol. In Nutraceuticals and Health Care; Elsevier: Amsterdam, The Netherlands, 2022; pp. 259–278. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Stanisic, D.; Costa, A.F.; Cruz, G.; Durán, N.; Tasic, L. Applications of Flavonoids, With an Emphasis on Hesperidin, as Anticancer Prodrugs: Phytotherapy as an Alternative to Chemotherapy. Stud. Nat. Prod. Chem. 2018, 58, 161–212. [Google Scholar] [CrossRef]
- Novotná, R.; Škařupová, D.; Hanyk, J.; Ulrichová, J.; Křen, V.; Bojarová, P.; Brodsky, K.; Vostálová, J.; Franková, J. Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti-Aging Agents. Molecules 2023, 28, 1728. [Google Scholar] [CrossRef] [PubMed]
- Irondi, E.A.; Akintunde, J.K.; Agboola, S.O.; Boligon, A.A.; Athayde, M.L. Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase. Food Sci. Nutr. 2017, 5, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Hasnaa M., A.T.; El Aziz Hanan A., A.; Azza, A.E.L.H.; El Deen, K. Utilization of Chicory Plant for Supplementing Some Products. Curr. Sci. Int. 2023, 6, 777–787. Available online: https://www.curresweb.com/csi/csi/2017/777-787.pdf (accessed on 26 September 2023).
- Papadoyannis, I.N.; Tsioni, G.K.; Samanidou, V.F. Simultaneous Determination of Nine Water and Fat Soluble Vitamins After SPE Separation and RP-HPLC Analysis in Pharmaceutical Preparations and Biological Fluids. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 3203–3231. [Google Scholar] [CrossRef]
- Johnson, W. Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of trilaurin, triarachidin, tribehenin, tricaprin, tricaprylin, trierucin, triheptanoin, triheptylundecanoin, triisononanoin, triisopalmitin, triisostearin, trilinolein, trimyristin, trioctanoin, triolein, tripalmitin, tripalmitolein, triricinolein, tristearin, triundecanoin, glyceryl triacetyl hydroxystearate, glyceryl triacetyl ricinoleate, and glyceryl stearate diacetate. Int. J. Toxicol. 2001, 20 (Suppl. 4), 61–94. [Google Scholar] [PubMed]
- Fougère, B.J.; Wynn, S.G. Herb Manufacture, Pharmacy, and Dosing. In Veterinary Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2007; pp. 221–236. [Google Scholar] [CrossRef]
- Lin, T.-K.; Zhong, L.; Santiago, J. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Kogan, A.; Garti, N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006, 123–126, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A. Nanoemulsions. In Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications; Elsevier Science: Amsterdam, The Netherlands, 2020; pp. 371–384. [Google Scholar] [CrossRef]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In Lipid Nanocarriers for Drug Targeting; Elsevier Science: Amsterdam, The Netherlands, 2018; pp. 473–508. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH Q2(R2) Guideline on Validation of Analytical Procedures. December 2023. Available online: www.ema.europa.eu/contact (accessed on 19 January 2024).
- Lister, A.S. 7 Validation of HPLC methods in pharmaceutical analysis. Sep. Sci. Technol. 2005, 6, 191–217. [Google Scholar] [CrossRef]
- Synaridou, M.S.; Tsamis, V.; Tsanaktsidou, E.; Ouranidis, A.; Kachrimanis, K.; Markopoulou, C.K. Response Surface and Freezing-Out Methodologies for the Extraction, Separation, and Validation of Seven Vitamins in a Novel Supplement with Determination by High-Performance Liquid Chromatography. Anal. Lett. 2023, 56, 1241–1255. [Google Scholar] [CrossRef]
Particle Size | Zeta Potential | |
---|---|---|
R2 | 0.998 | 0.927 |
Adjusted R2 | 0.940 | 0.908 |
Predicted R2 | −0.515 | 0.849 |
Adeq Precision | 131.23 | 128.81 |
F | 20.68 | 50.80 |
C.V.% | 13.92 | 15.09 |
p | 0.0469 | 0.0001 |
API | Working Wavelength (nm) | Retention Time (min) | Capacity Factor (k′) | Resolution | Tailing Factor |
---|---|---|---|---|---|
Chlorogenic acid | 280 | 3.55 | 1.0 | 1.5 | 0.9 |
Caffeine | 280 | 4.49 | 1.2 | 2.4 | 0.9 |
Rutin | 280 | 5.62 | 1.8 | 3.2 | 0.9 |
Hesperidin | 280 | 7.01 | 2.5 | 5.1 | 0.9 |
Quercetin | 280 | 7.36 | 2.6 | 2.0 | 0.9 |
Vitamin A | 326 | 12.93 | 5.4 | 3.6 | 0.9 |
Vitamin E | 280 | 14.75 | 6.3 | – | 0.9 |
API | Concentration Range (μg/mL) | Linear Regression | R2 | LLOD (μg/mL) | LLOQ (μg/mL) |
---|---|---|---|---|---|
Chlorogenic acid | 0.93–18.60 | y = 19,226 ± 770x − 957.8 ± 7564.5 | 0.999 | 0.16 | 0.48 |
Caffeine | 0.47–9.30 | y = 51,098 ± 2370x − 1119.6 ± 11,644.0 | 0.998 | 0.04 | 0.14 |
Rutin | 0.56–11.20 | y = 13,066 ± 744x − 631.8 ± 4481 | 0.998 | 0.17 | 0.56 |
Hesperidin | 0.62–12.60 | y = 32,502 ± 1488x − 266.2 ± 9902.2 | 0.998 | 0.04 | 0.12 |
Quercetin | 0.11–2.22 | y = 124,768 ± 6080x − 1003.3 ± 7097.8 | 0.998 | 0.02 | 0.07 |
Vitamin A | 0.29–5.70 | y = 67,155 ± 2740x − 3001.6 ± 8250.3 | 0.999 | 0.03 | 0.11 |
Vitamin E | 1.55–31.0 | y = 5529 ± 168x − 572.9 ± 2744.2 | 0.999 | 0.09 | 0.29 |
API | Concentration (μg/mL) | Found Concentration (μg/mL) | %Recovery | Repeatability | Intermediate Precision | |||
---|---|---|---|---|---|---|---|---|
%RSD (n = 3) | Mean %RSD (n = 3) | |||||||
1st Day | 2nd Day | 3rd Day | Total | |||||
Chlorogenic acid | 0.92 | 0.93 | 101.1 | 1.9 | 1.9 | 1.5 | 1.7 | 2.0 |
7.36 | 7.25 | 98.5 | 0.2 | 0.2 | 0.4 | 0.4 | 0.9 | |
18.40 | 18.45 | 100.3 | 0.5 | 0.5 | 0.5 | 0.3 | 0.5 | |
Average (n = 3) | 100.0 | |||||||
Confidence interval (95%) | 100 ± 1 | |||||||
Caffeine | 0.47 | 0.465 | 97.8 | 1.9 | 1.1 | 1.8 | 1.4 | 1.7 |
3.80 | 3.80 | 100.0 | 0.2 | 0.3 | 0.4 | 0.4 | 0.3 | |
9.50 | 9.37 | 98.6 | 0.5 | 0.5 | 0.4 | 0.1 | 0.5 | |
Average (n = 3) | 99.8 | |||||||
Confidence interval (95%) | 100 ± 1 | |||||||
Rutin | 0.56 | 0.58 | 103.6 | 1.6 | 1.6 | 1.6 | 1.3 | 1.7 |
4.48 | 4.49 | 100.2 | 1.5 | 1.5 | 1.4 | 1.4 | 1.6 | |
11.20 | 11.12 | 99.3 | 0.7 | 0.7 | 0.7 | 0.4 | 0.8 | |
Average (n = 3) | 101.0 | |||||||
Confidence interval (95%) | 101 ± 2 | |||||||
Hesperidin | 0.62 | 0.61 | 98.4 | 1.4 | 1.4 | 0.8 | 1.8 | 2.0 |
5.04 | 5.00 | 99.2 | 0.4 | 0.4 | 0.5 | 0.3 | 0.4 | |
12.6 | 12.41 | 98.5 | 0.4 | 0.4 | 0.3 | 0.1 | 0.4 | |
Average (n = 3) | 99.0 | |||||||
Confidence interval (95%) | 99.0 | |||||||
Quercetin | 0.109 | 0.11 | 100.9 | 1.6 | 1.4 | 0.5 | 0.7 | 1.5 |
0.87 | 0.867 | 99.4 | 0.5 | 0.5 | 0.4 | 0.2 | 0.5 | |
2.18 | 2.14 | 98.2 | 0.4 | 0.4 | 0.5 | 0.2 | 0.4 | |
Average (n = 3) | 99.5 | |||||||
Confidence interval (95%) | 100 ± 1 | |||||||
Vitamin A | 0.28 | 0.29 | 101.4 | 1.7 | 1.4 | 1.7 | 1.8 | 1.9 |
2.28 | 2.26 | 99.1 | 0.2 | 0.2 | 0.4 | 0.4 | 0.7 | |
5.70 | 5.63 | 98.8 | 0.5 | 0.5 | 0.5 | 0.3 | 0.5 | |
Average (n = 3) | 99.8 | |||||||
Confidence interval (95%) | 100 ± 1 | |||||||
Vitamin E | 1.55 | 1.54 | 99.7 | 2.0 | 1.6 | 1.6 | 1.6 | 1.7 |
12.36 | 12.16 | 98.4 | 1.7 | 1.7 | 0.4 | 0.2 | 1.8 | |
30.90 | 30.74 | 99.5 | 0.2 | 0.2 | 0.5 | 1.1 | 1.2 | |
Average (n = 3) | 99.2 | |||||||
Confidence interval (95%) | 99 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamaris, G.; Dalavitsou, A.; Markopoulou, C.K. Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study. Separations 2024, 11, 43. https://doi.org/10.3390/separations11020043
Kamaris G, Dalavitsou A, Markopoulou CK. Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study. Separations. 2024; 11(2):43. https://doi.org/10.3390/separations11020043
Chicago/Turabian StyleKamaris, Georgios, Antonia Dalavitsou, and Catherine K. Markopoulou. 2024. "Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study" Separations 11, no. 2: 43. https://doi.org/10.3390/separations11020043
APA StyleKamaris, G., Dalavitsou, A., & Markopoulou, C. K. (2024). Development and Validation of an HPLC-DAD Method for the Determination of Seven Antioxidants in a Nano-Emulsion: Formulation and Stability Study. Separations, 11(2), 43. https://doi.org/10.3390/separations11020043