Determination of Perfluorinated and Polyfluorinated Alkyl Substances (PFASs) in PM10 Samples: Analytical Method, Seasonal Trends, and Implications for Urban Air Quality in the City of Terni (Central Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Collection
2.3. Organic Carbon and Elemental Carbon Analysis in PM10
2.4. Sample Treatment
2.5. Chromatographic and MS Conditions
2.6. Quality Control (QC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Sample Preparation
3.2. PFAS Concentration and Composition Profiles
3.3. General Trends of Air Quality in Terni during the Sampling Campaign
3.4. PFAS Concentration and Composition Profiles
3.5. PFAS Daily and Seasonal Trends
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm (accessed on 17 January 2024).
- Available online: https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/terminology-per-and-polyfluoroalkyl-substances.pdf (accessed on 17 January 2024).
- Contaminants of Emerging Concern in the Marine Environment, 1st ed.; Leon, V.M.; Bellas, J. (Eds.) Elsevier: Amsterdam, The Netherlands, 2023; pp. 169–228. ISBN 9780323902977. [Google Scholar]
- Keller, J.M.; Ngai, L.; McNeill, J.B.; Wood, L.D.; Stewart, K.R.; O’Connell, S.G.; Kucklick, J.R. Perfluoroalkyl contaminants in plasma of five sea turtle species: Comparisons in concentration and potential health risks. Environ. Toxicol. Chem. 2012, 31, 1223. [Google Scholar] [CrossRef]
- Zodrow, J.; Vedagiri, U.; Sorell, T.; McIntosh, L.; Larson, E.; Hall, L.; Dourson, M.; Dell, L.; Cox, D.; Barfoot, K.; et al. PFAS Experts Symposium 2: PFAS Toxicology and Risk Assessment in 2021—Contemporary issues in human and ecological risk assessment of PFAS. Remediation 2022, 32, 29–44. [Google Scholar] [CrossRef]
- UNEP. 2021 Proposal to List Long-Chain Perfluorocarboxylic Acids, Their Salts and Related Compounds in Annexes A, B And/or C to the Stockholm Convention on Persistent Organic Pollutants, UNEP/POPS/POPRC.17/7. Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland. 2021. Available online: http://chm.pops.int/Convention/POPsReviewCommittee/Chemicals/tabid/243/Default.aspx (accessed on 17 January 2024).
- UNEP. 2022 Decision SC-10/13. Perfluorohexane Sulfonic Acid (PFHxS), its Salts and PFHxS-Related Compounds, United Nations Environment Programme (UNEP), ed. SC-10/13. Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland. 2022. Available online: http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (accessed on 17 January 2024).
- van der Veen, I.; Fiedler, H.; de Boer, J. Assessment of the per- and polyfluoroalkyl substances analysis under the Stockholm Convention–2018/2019. Chemosphere 2023, 313, 137549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbühler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources. Environ. Int. 2014, 70, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://wedocs.unep.org/handle/20.500.11822/29682;jsessionid=56C148634575FC7B83A02D6695EB18B0 (accessed on 17 January 2024).
- Paris-Davila, T.; Gaines, L.G.T.; Lucas, K.; Nylander-French, L.A. Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)—A review. Am. J. Ind. Med. 2023, 66, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Timshina, A.S.; Sobczak, W.J.; Griffin, E.K.; Lin, A.M.; Townsend, T.G.; Bowden, J.A. Up in the air: Polyfluoroalkyl phosphate esters (PAPs) in airborne dust captured by air conditioning (AC) filters. Chemosphere 2023, 325, 138307. [Google Scholar] [CrossRef]
- Liu, L.S.; Guo, Y.T.; Wu, Q.Z.; Zeeshan, M.; Qin, S.J.; Zeng, H.X.; Lin, L.Z.; Chou, W.C.; Yu, Y.J.; Dong, G.H.; et al. Per- and polyfluoroalkyl substances in ambient fine particulate matter in the Pearl River Delta, China: Levels, distribution and health implications. Environ. Pollut. 2023, 334, 122138. [Google Scholar] [CrossRef]
- Dauchy, X. Evidence of large-scale deposition of airborne emissions of per- and polyfluoroalkyl substances (PFASs) near a fluoropolymer production plant in an urban area. Chemosphere 2023, 337, 139407. [Google Scholar] [CrossRef]
- Saini, A.; Chinnadurai, S.; Schuster, J.K.; Eng, A.; Harner, T. Per- and polyfluoroalkyl substances and volatile methyl siloxanes in global air: Spatial and temporal trends. Environ. Pollut. 2023, 323, 121291. [Google Scholar] [CrossRef]
- Available online: https://www.pca.state.mn.us/sites/default/files/tdr-g1-23.pdf (accessed on 17 January 2024).
- Available online: https://www.diva-portal.org/smash/get/diva2:1775705/FULLTEXT01.pdf (accessed on 17 January 2024).
- Faust, J.A. PFAS on atmospheric aerosol particles: A review. Environ. Sci. Process. Impacts 2023, 25, 133–150. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef]
- Young, C.J.; Mabury, S.A. Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; p. 208. [Google Scholar]
- Nakayama, S.F.; Yoshikane, M.; Onoda, Y.; Nishihama, Y.; Iwai-Shimada, M.; Takagi, M.; Kobayashi, Y.; Isobe, T. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal. Chem. 2019, 121, 115410. [Google Scholar] [CrossRef]
- Kourtchev, I.; Hellebust, S.; Heffernan, E.; Wenger, J.; Towers, S.; Diapouli, E.; Eleftheriadis, K. A new on-line SPE LC-HRMS method for the analysis of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in PM2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. Sci. Total Environ. 2022, 835, 155496. [Google Scholar] [CrossRef]
- Ferrero, L.; Cappelletti, D.; Moroni, B.; Sangiorgi, G.; Perrone, M.G.; Crocchianti, S.; Bolzacchini, E. Wintertime aerosol dynamics and chemical composition across the mixing layer over basin valleys. Atmos. Environ. 2012, 56, 143–153. [Google Scholar] [CrossRef]
- Moroni, B.; Cappelletti, D.; Marmottini, F.; Scardazza, F.; Ferrero, L.; Bolzacchini, E. Integrated single particle-bulk chemical approach for the characterization of local and long range sources of particulate pollutants. Atmos. Environ. 2012, 50, 267–277. [Google Scholar] [CrossRef]
- Tositti, L.; Moroni, B.; Dinelli, E.; Morozzi, P.; Brattich, E.; Sebastiani, B.; Petroselli, C.; Crocchianti, S.; Selvaggi, R.; Goretti, E.; et al. Deposition processes over complex topographies: Experimental data meets atmospheric modeling. Sci. Total Environ. 2020, 744, 140974. [Google Scholar] [CrossRef]
- Massimi, L.; Simonetti, G.; Buiarelli, F.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Ristorini, M.; Astolfi, M.L.; Canepari, S. Spatial distribution of levoglucosan and alternative biomass burning tracers in atmospheric aerosols, in an urban and industrial hot-spot of Central Italy. Atmos. Res. 2020, 239, 104904. [Google Scholar] [CrossRef]
- Moroni, B.; Crocchianti, S.; Petroselli, C.; Selvaggi, R.; Becagli, S.; Traversi, R.; Cappelletti, D. Potential source contribution function analysis of long-range transported aerosols in the Central Mediterranean: A comparative study of two background sites in Italy. Rend. Lincei. 2019, 30, 337–349. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.P. Toward a standardised thermal–optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Sandrini, S.; Fuzzi, S.; Piazzalunga, A.; Prati, P.; Bonasoni, P.; Cavalli, F.; Bove, M.C.; Calvello, M.; Cappelletti, D.; Colombi, C.; et al. Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos. Environ. 2014, 99, 587–598. [Google Scholar] [CrossRef]
- Barola, C.; Moretti, S.; Giusepponi, D.; Paoletti, F.; Saluti, G.; Cruciani, G.; Brambilla, G.; Galarini, R. A liquid chromatography-high resolution mass spectrometry method for the determination of thirty-three per- and polyfluoroalkyl substances in animal liver. J. Chromatog. A 2020, 1628, 461442. [Google Scholar] [CrossRef]
- EURL for Halogenated POPs in Feed and Food (2022): Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed, Version 1.2 of 11 May 2022. Available online: https://eurl-pops.eu/core-working-groups#_pfas (accessed on 17 January 2024).
- Powley, C.R.; George, S.W.; Ryan, T.W.; Buck, R.C. Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes. Anal. Chem. 2005, 77, 6353. [Google Scholar] [CrossRef]
- Sanan, T.; Magnuson, M. Analysis of per- and polyfluorinated alkyl substances in sub-sampled water matrices with online solid phase extraction/isotope dilution tandem mass spectrometry. J. Chromatog. A 2020, 1626, 461324. [Google Scholar] [CrossRef]
- Pietrodangelo, A.; Bove, M.C.; Forello, A.C.; Crova, F.; Bigi, A.; Brattich, E.; Riccio, A.; Becagli, S.; Bertinetti, S.; Calzolai, G.; et al. A PM10 chemically characterized nation-wide dataset for Italy. Geographical influence on urban air pollution and source apportionment. Sci. Total Environ. 2024, 908, 167891. [Google Scholar] [CrossRef]
- Yao, Y.; Chang, S.; Zhao, Y.; Tang, J.; Sun, H.; Xie, Z. Per- and poly-fluoroalkyl substances (PFASs) in the urban, industrial, and background atmosphere of Northeastern China coast around the Bohai Sea: Occurrence, partitioning, and seasonal variation. Atmos. Environ. 2017, 167, 150–158. [Google Scholar] [CrossRef]
- Barber, J.L.; Berger, U.; Chaemfa, C.; Huber, S.; Jahnke, A.; Temme, C.; Jones, K.C. analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530–541. [Google Scholar] [CrossRef]
- Yu, N.; Guo, H.; Yang, J.; Jin, L.; Wang, X.; Shi, W.; Zhang, X.; Yu, H.; Wei, S. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environ. Sci. Technol. 2018, 52, 8205–8214. [Google Scholar] [CrossRef]
- Müller, C.E.; Gerecke, A.C.; Bogdal, C.; Wang, Z.; Scheringer, M.; Hungerbuhler, K. Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): I. Day-night patterns of air concentrations in summer in Zurich, Switzerland. Environ. Pollut. 2012, 169, 196–203. [Google Scholar] [CrossRef]
- Casas, G.; Martinez-Varela, A.; Vila-Costa, M.; Jiménez, B.; Dachs, J. Rain Amplification of Persistent Organic Pollutants. Environ. Sci. Technol. 2021, 55, 12961–12972. [Google Scholar]
- Zhou, J.; Baumann, K.; Mead, R.N.; Skrabal, S.A.; Kieber, R.J.; Avery, G.B.; Shimizu, M.; DeWitt, J.C.; Sun, M.; Vance, S.A.; et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci. Process. Impacts 2021, 23, 580–587. [Google Scholar] [CrossRef]
- Wilmot, T.Y.; Mallia, D.V.; Hallar, A.G.; Lin, J.C. Wildfire activity is driving summertime air quality degradation across the western US: A model-based attribution to smoke source regions. Environ. Res. Lett. 2022, 17, 114014. [Google Scholar] [CrossRef]
- Shen, L.; Mickley, L.J. Effects of El Nino on Summertime Ozone air quality in the Eastern United States. Geophys. Res. Lett. 2017, 44, 12543. [Google Scholar] [CrossRef]
- Chan, K.L.; Wang, S.; Liu, C.; Zhou, B.; Wenig, M.O.; Saiz-Lopez, A. On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Sci. Total Environ. 2017, 580, 974. [Google Scholar] [CrossRef]
Name | Acronym | IS |
---|---|---|
Perfluoro-n-butanoic acid | PFBA | [13C4]PFBA |
Perfluoro-n-pentanoic acid | PFPeA | [13C5]PFPeA |
Perfluoro-n-hexanoic acid | PFHxA | [13C5]PFHxA |
Perfluoro-n-heptanoic acid | PFHpA | [13C4]PFHpA |
Perfluoro-n-octanoic acid | PFOA | [13C8]PFOA |
Perfluoro-n-nonanoic acid | PFNA | [13C9]PFNA |
Perfluoro-n-decanoic acid | PFDA | [13C6]PFDA |
Perfluoro-n-undecanoic acid | PFUdA | [13C7]PFUdA |
Perfluoro-n-dodecanoic acid | PFDoA | [13C2]PFDoA |
Perfluoro-n-tridecanoic acid a | PFTrDA | [13C2]PFTeDA |
Perfluoro-n-tetradecanoic acid | PFTeDA | [13C2]PFTeDA |
Perfluoro-n-hexadecanoic acid | PFHxDA | [13C2]PFHxDA |
Perfluoro-n-octadecanoic acid a | PFODA | [13C2]PFHxDA |
Potassium perfluoro-1-butanesulfonate | L-PFBS | [13C3]L-PFBS |
Sodium perfluoro-1-pentanesulfonate a | L-PFPeS | [13C3]L-PFHxS |
Sodium perfluoro-1-hexanesulfonate | L-PFHxS | [13C3]L-PFHxS |
Sodium perfluoro-1-heptanesulfonate a | L-PFHpS | [13C3]L-PFHxS |
Sodium perfluoro-1-octanesulfonate | L-PFOS | [13C3]L-PFOS |
Sodium perfluoro-1-nonanesulfonate a | L-PFNS | [13C6]PFDA |
Sodium perfluoro-1-decanesulfonate a | L-PFDS | [13C7]PFUdA |
Sodium perfluoro-1-dodecanesulfonate a | L-PFDoS | [13C7]PFUdA |
Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate a | 9Cl-PF3ONS | [13C7]PFUdA |
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate a | 11Cl-PF3OUdS | [13C7]PFUdA |
Sodium 1H,1H,2H,2H-perfluorooctanesulfonate | 6:2FTS | [13C2]6:2FTS |
Sodium 1H,1H,2H,2H-perfluorodecanesulfonate | 8:2FTS | [13C2]8:2FTS |
3-Perfluoroheptylpropanoic acid a | FHpPA | d3-N-MeFOSAA |
2-Perfluorooctylethanoic acid | FOEA | [13C2]FOEA |
2H-Perfluoro-2-decenoic acid | FOUEA | [13C2]FOUEA |
2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid | HFPO-DA | [13C3]HFPO-DA |
Sodium dodecafluoro-3H-4,8-dioxanonanoate a | NaDONA | [13C5]PFHxA |
N-ethylperfluoro-1-octanesulfonamidoacetic acid | N-EtFOSAA | d5-N-EtFOSAA |
N-methylperfluoro-1-octanesulfonamidoacetic acid | N-MeFOSAA | d3-N-MeFOSAA |
Potassium perfluoro-4-ethylcyclohexanesulfonate a | PFECHS | [13C5]PFHxA |
Fragment Ions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Analyte | Elemental Formula | RT (min) | Monitored Ion | Measured m/z | Ion Formula | Measured m/z | Ion Formula | Measured m/z | Ion Ratio (1/2) | CE (eV) |
1 | PFBA | C4HF7O2 | 7.1 | [M-H]− | 212.9792 | C3F7− | 169.0 | [M-H]− | 213.0 | 100/2 | 10 |
2 | PFPeA | C5HF9O2 | 9.6 | [M-H]− | 262.9760 | C4F9− | 219.0 | C4OF7− | 197.0 | 100/4 | 10 |
3 | L-PFBS | CF3(CF2)3SO3K | 10.2 | [M-K]− | 298.9430 | SO3•− | 80.0 | [M-K]− | 299.0 | 100/47 | 30 |
4 | L-PFPeS | C5F11SO3Na | 11.4 | [M-Na]− | 348.9398 | SO3•− | 80.0 | FSO3− | 99.0 | 100/28 | 40 |
5 | PFHxA | C6HO2F11 | 11.6 | [M-H]− | 312.9728 | C2F5− | 119.0 | C5F11− | 269.0 | 100/30 | 20 |
6 | HFPO-DA | C6HF11O3 | 11.6 | [M-H-CO2]− | 284.9769 a | C3OF7− | 185.0 | [M-H-CO2]− | 285.0 | 100/46 | 20 |
7 | L-PFHxS | C6F13SO3Na | 12.5 | [M-Na]− | 398.9366 | SO3•− | 80.0 | FSO3− | 99.0 | 100/25 | 50 |
8 | NaDONA | C7HF12O4Na | 12.5 | [M-Na]− | 376.9689 | C4O2F9− | 251.0 | COF3− | 85.0 | 100/82 | 20 |
9 | PFHpA | C7HF13O2 | 12.8 | [M-H]− | 362.9696 | C3F7− | 169.0 | C2F5− | 119.0 | 100/18 | 10 |
10 | PFECHS | C8F15SO3K | 13.1 | [M-K]− | 460.9334 | FSO3− | 99.0 | C8F15− | 381.0 | 100/79 | 30 |
11 | 6:2FTS | C8H4F13SO3Na | 13.7 | [M-Na]− | 426.9679 | SO3•− | 80.0 | C8H3O3F12S− | 407.0 | 100/60 | 30 |
12 | L-PFHpS | C7F15SO3Na | 13.3 | [M-Na]− | 448.9334 | SO3•− | 80.0 | FSO3− | 99.0 | 100/27 | 50 |
13 | PFOA | C8HF15O2 | 13.8 | [M-H]− | 412.9664 | C7F15− | 369.0 | C3F7− | 169.0 | 100/23 | 10 |
14 | FOUEA | C10H2F16O2 | 14.2 | [M-H]− | 456.9727 | C2F5− | 119.0 | C9F15− | 393.0 | 100/90 | 50 |
15 | FOEA | C10H3F17O2 | 14.3 | [M-H]− | 476.9789 | C9F15− | 393.0 | CO2F− | 63.0 | 100/88 | 10 |
16 | FHpPA | C10H5F15O2 | 14.4 | [M-H]− | 440.9977 | C9F11− | 317.0 | C8F9− | 267.0 | 100/20 | 30 |
17 | L-PFOS | C8F17SO3Na | 14.5 | [M-Na]− | 498.9302 | SO3•− | 80.0 | FSO3− | 99.0 | 100/31 | 50 |
18 | PFNA | C9HF17O2 | 14.5 | [M-H]− | 462.9632 | C3F7− | 169.0 | C4F9− | 219.0 | 100/87 | 20 |
19 | 9Cl-PF3ONS | C8F16ClSO4K | 14.5 | [M-K]− | 530.8956 | [M-K]− | 530.9 | C6OClF12− | 350.9 | 100/55 | 20 |
20 | L-PFNS | C9F19SO3Na | 14.8 | [M-Na]− | 548.927 | SO3•− | 80.0 | FSO3− | 99.0 | 100/36 | 50 |
21 | 8:2FTS | C10H4F17SO3Na | 14.8 | [M-Na]− | 526.9615 | HSO3− | 81.0 | C10H3F16SO3− | 507.0 | 100/65 | 30 |
22 | PFDA | C10HF19O2 | 15.5 | [M-H]− | 512.9600 | C4F9− | 219.0 | C8F9− | 267.0 | 100/95 | 20 |
23 | N-MeFOSAA | C11H6F17NO4S | 15.8 | [M-H]− | 569.9673 | C8F17− | 419.0 | C4F9− | 219.0 | 100/19 | 20 |
24 | L-PFDS | C10F21SO3Na | 16.1 | [M-Na]− | 598.9238 | SO3•− | 80.0 | FSO3− | 99.0 | 100/44 | 50 |
25 | N-EtFOSAA | C12H8F17NO4S | 16.4 | [M-H]− | 583.9830 | C8F17− | 419.0 | C10H5O2NF17S− | 526.0 | 100/40 | 20 |
26 | PFUdA | C11HO2F21 | 17.2 | [M-H]− | 562.9569 | C5F11− | 269.0 | C10F21− | 519.0 | 100/54 | 20 |
27 | 11Cl-PF3OUdS | C10F20ClSO4K | 17.3 | [M-K]− | 630.8892 | C8OClF16− | 450.9 | [M-K]− | 630.9 | 100/34 | 30 |
28 | PFDoA | C12HF23O2 | 19.4 | [M-H]− | 612.9537 | C3F7− | 169.0 | C4F9− | 219.0 | 100/30 | 30 |
29 | L-PFDoS | C12F25SO3Na | 19.8 | [M-Na]− | 698.9174 | SO3•− | 80.0 | FSO3− | 99.0 | 100/40 | 60 |
30 | PFTrDA | C13HO2F25 | 20.4 | [M-H]− | 662.9505 | C3F7− | 169.0 | C4F9− | 219.0 | 100/40 | 30 |
31 | PFTeDA | C14HO2F27 | 20.7 | [M-H]− | 712.9473 | C3F7− | 169.0 | C4F9− | 219.0 | 100/55 | 30 |
32 | PFHxDA | C16HF31O2 | 21.2 | [M-H]− | 812.9409 | C3F7− | 169.0 | C4F9− | 219.0 | 100/83 | 30 |
33 | PFODA | C18HF35O2 | 22.0 | [M-H]− | 912.9345 | C3F7− | 169.0 | C5F11− | 269.0 | 100/98 | 30 |
Analyte | LOD (pg/cm2) | LOQ (pg/cm2) | Trueness (%) | CV% |
---|---|---|---|---|
PFBA (Perfluoro-n-butanoic acid) | >1 | NA | ||
PFPeA (Perfluoro-n-pentanoic acid) | 0.5 | 0.5 | 77 | 9 |
PFBS (Perfluoro-1-butanesulfonate) | 0.25 | 0.5 | 78 | 8 |
PFHxA (Perfluoro-n-hexanoic acid) | 0.5 | 0.5 | 98 | 2 |
PFPeS (Sodium perfluoro-1-pentanesulfonate) | 0.25 | 0.25 | 118 | 11 |
HFPO-DA (2,3,3,3-tetrfluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid) | >1 | NA | ||
PFHpA (Pefluoro-n-heptanoic acid) | 0.5 | 1 | 96 | 4 |
PFHxS (Perfluoro-1-hexanesulfonate) | 0.25 | 0.25 | 80 | 10 |
PFHpS (Sodium perfluoro-1-heptanesulfonate) | 0.25 | 0.25 | 89 | 2 |
NaDONA (Sodium dodecafluoro-3H-4,8-dioxanonanoate) | 0.25 | 0.25 | 109 | 6 |
PFECHS (Potassium perfluoro-4-ethylcyclohexanesulfaonate) | 0.25 | 0.25 | 104 | 16 |
6:2FTS (Sodium 1H,1H,2H,2H-perfluorooctane sulfonate) | 0.5 | 1 | 84 | 12 |
PFOA (Perfluoro-n-octanoic acid) | 0.5 | 0.5 | 123 | 15 |
PFOS (Perfluoro-1-octanesulfonate) | 0.25 | 0.5 | 73 | 3 |
PFNA (Perfluoro-n-nonanoic acid) | 0.25 | 0.5 | 82 | 11 |
FOUEA (2H-Perfluoro-2-decenoic acid) | 0.25 | >1 | NA | |
FOEA (2-Perfluorooctyl ethanoic acid) | >1 | NA | ||
9Cl-PF3ONS (Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate) | 0.25 | 0.25 | 86 | 5 |
FHpPA (3-Perfluoroheptyl propanoic acid) | 0.5 | >1 | NA | |
8:2 PAP (Sodium 1H,1H,2H,2H-perfluorodecylphospate) | >1 | NA | ||
8:2FTS (Sodium 1H,1H,2H,2H-perfluorodecane sulfonate) | 0.25 | 0.5 | 77 | 6 |
L-PFNS (Sodium perfluoro-1-nonanesulfonate) | 0.25 | 0.25 | 114 | 7 |
PFDA (Perfluoro-n-decanoic acid) | 0.25 | 0.5 | 96 | 9 |
N-MeFOSAA (N-methylperfluoro-1-octanesulfonamidoacetic acid) | 0.25 | 0.25 | 109 | 7 |
PFDS (Perfluoro-1-decanesulfonate) | 0.25 | 0.25 | 109 | 2 |
PFUdA (Perfluoro-n-undecanoic acid) | 0.25 | 0.5 | 78 | 4 |
N-EtFOSAA (N-ethylperfluoro-1-octanesulfonamidoacetic acid) | 0.25 | 0.5 | 86 | 1 |
11Cl-PF3OUdS (Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate) | 0.25 | 0.25 | 118 | 1 |
PFDoA (Perfluoro-n-dodecanoic acid) | 0.25 | 0.5 | 84 | 4 |
PFDoS (Sodium perfluoro-1-dodecanesulfonate) | 0.25 | >1 | NA | |
PFTrDA (Perfluoro-n-tridecanoic acid) | 0.25 | 1 | 121 | 16 |
PFTeDA (Pefluoro-n-tetradecanoic acid) | 0.25 | 0.25 | 102 | 9 |
PFHxDA (Perfluoro-n-hexadecanoic acid) | 0.25 | 0.25 | 120 | 4 |
PFODA (Perfluoro-n-octadecanoic acid) | 0.5 | >1 | NA |
PM10, μg/m3 | OM, μg/m3 | PFHxA pg/m3 | PFHpA pg/m3 | PFOA pg/m3 | PFDA pg/m3 | PFOS pg/m3 | SUM pg/m3 | |
---|---|---|---|---|---|---|---|---|
Median | 29.7 | 8.5 | 2.0 | 0.6 | 4.8 | 0.5 | 1.2 | 10.3 |
Mean | 35.1 | 15.3 | 2.7 | 0.9 | 8.1 | 0.8 | 5.8 | 17.8 |
Min | 13.0 | 3.9 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 1.5 |
Max | 109.9 | 87.5 | 12.6 | 3.8 | 26.1 | 3.6 | 22.6 | 139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, S.; Castellini, S.; Barola, C.; Bucaletti, E.; Petroselli, C.; Selvaggi, R.; Galletti, M.; Cappelletti, D.; Galarini, R. Determination of Perfluorinated and Polyfluorinated Alkyl Substances (PFASs) in PM10 Samples: Analytical Method, Seasonal Trends, and Implications for Urban Air Quality in the City of Terni (Central Italy). Separations 2024, 11, 42. https://doi.org/10.3390/separations11020042
Moretti S, Castellini S, Barola C, Bucaletti E, Petroselli C, Selvaggi R, Galletti M, Cappelletti D, Galarini R. Determination of Perfluorinated and Polyfluorinated Alkyl Substances (PFASs) in PM10 Samples: Analytical Method, Seasonal Trends, and Implications for Urban Air Quality in the City of Terni (Central Italy). Separations. 2024; 11(2):42. https://doi.org/10.3390/separations11020042
Chicago/Turabian StyleMoretti, Simone, Silvia Castellini, Carolina Barola, Elisabetta Bucaletti, Chiara Petroselli, Roberta Selvaggi, Mara Galletti, David Cappelletti, and Roberta Galarini. 2024. "Determination of Perfluorinated and Polyfluorinated Alkyl Substances (PFASs) in PM10 Samples: Analytical Method, Seasonal Trends, and Implications for Urban Air Quality in the City of Terni (Central Italy)" Separations 11, no. 2: 42. https://doi.org/10.3390/separations11020042
APA StyleMoretti, S., Castellini, S., Barola, C., Bucaletti, E., Petroselli, C., Selvaggi, R., Galletti, M., Cappelletti, D., & Galarini, R. (2024). Determination of Perfluorinated and Polyfluorinated Alkyl Substances (PFASs) in PM10 Samples: Analytical Method, Seasonal Trends, and Implications for Urban Air Quality in the City of Terni (Central Italy). Separations, 11(2), 42. https://doi.org/10.3390/separations11020042